Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Turaga Lab / Publications
general_search_page-panel_pane_1 | views_panes

18 Publications

Showing 1-10 of 18 results
12/04/17 | Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations.
Nonnenmacher M, Turaga SC, Macke JH
Neural Information Processing Systems (NIPS 2017). 2017 Dec 04:

A powerful approach for understanding neural population dynamics is to extract low-dimensional trajectories from population recordings using dimensionality reduction methods. Current approaches for dimensionality reduction on neural data are limited to single population recordings, and can not identify dynamics embedded across multiple measurements. We propose an approach for extracting low-dimensional dynamics from multiple, sequential recordings. Our algorithm scales to data comprising millions of observed dimensions, making it possible to access dynamics distributed across large populations or multiple brain areas. Building on subspace-identification approaches for dynamical systems, we perform parameter estimation by minimizing a moment-matching objective using a scalable stochastic gradient descent algorithm: The model is optimized to predict temporal covariations across neurons and across time. We show how this approach naturally handles missing data and multiple partial recordings, and can identify dynamics and predict correlations even in the presence of severe subsampling and small overlap between recordings. We demonstrate the effectiveness of the approach both on simulated data and a whole-brain larval zebrafish imaging dataset. 

View Publication Page
12/04/17 | Fast amortized inference of neural activity from calcium imaging data with variational autoencoders.
Speiser A, Yan J, Archer E, Buesing L, Turaga SC, Macke JH
Neural Information Processing Systems (NIPS 2017). 2017 Dec 04:

Calcium imaging permits optical measurement of neural activity. Since intracellular calcium concentration is an indirect measurement of neural activity, computational tools are necessary to infer the true underlying spiking activity from fluorescence measurements. Bayesian model inversion can be used to solve this problem, but typically requires either computationally expensive MCMC sampling, or faster but approximate maximum-a-posteriori optimization. Here, we introduce a flexible algorithmic framework for fast, efficient and accurate extraction of neural spikes from imaging data. Using the framework of variational autoencoders, we propose to amortize inference by training a deep neural network to perform model inversion efficiently. The recognition network is trained to produce samples from the posterior distribution over spike trains. Once trained, performing inference amounts to a fast single forward pass through the network, without the need for iterative optimization or sampling. We show that amortization can be applied flexibly to a wide range of nonlinear generative models and significantly improves upon the state of the art in computation time, while achieving competitive accuracy. Our framework is also able to represent posterior distributions over spike-trains. We demonstrate the generality of our method by proposing the first probabilistic approach for separating backpropagating action potentials from putative synaptic inputs in calcium imaging of dendritic spines. 

View Publication Page
09/09/17 | A deep structured learning approach towards automating connectome reconstruction from 3D electron micrographs.
Funke J, Tschopp FD, Grisaitis W, Singh C, Saalfeld S, Turaga SC
arXiv. 2017 Sep 09:

We present a deep learning method for neuron segmentation from 3D electron microscopy (EM), which improves significantly upon state of the art in terms of accuracy and scalability. Our method consists of a fully 3D extension of the U-NET architecture, trained to predict affinity graphs on voxels, followed by a simple and efficient iterative region agglomeration. We train the U-NET using a structured loss function based on MALIS that encourages topological correctness. The resulting affinity predictions are accurate enough that we obtain state-of-the-art results by a simple new learning-free percentile-based iterative agglomeration algorithm. We demonstrate the accuracy of our method on three different and diverse EM datasets where we significantly improve over the current state of the art. We also show for the first time that a common 3D segmentation strategy can be applied to both well-aligned nearly isotropic block-face EM data, and poorly aligned anisotropic serial sectioned EM data. The runtime of our method scales with O(n) in the size of the volume and is thus ready to be applied to very large datasets.

View Publication Page
08/19/17 | Community-based benchmarking improves spike inference from two-photon calcium imaging data.
Berens P, Freeman J, Deneux T, Chenkov N, McColgan T, Speiser A, Macke JH, Turaga SC, Mineault P, Rupprecht P, Gerhard S, Friedrich RW, Friedrich J, Paninski L, Pachitariu M, Harris KD, Bolte B, Machado TA, Ringach D, etal
bioRxiv. 2017 Aug 17:177956. doi:

In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike trains from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

View Publication Page
06/15/16 | Efficient convolutional neural networks for pixelwise classification on heterogeneous hardware systems.
Tschopp F, Martel JN, Turaga SC, Cook M, Funke J
IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro. 2016 Jun 15:. doi: 10.1109/ISBI.2016.7493487

With recent advances in high-throughput Electron Microscopy (EM) imaging it is now possible to image an entire nervous system of organisms like Drosophila melanogaster. One of the bottlenecks to reconstruct a connectome from these large volumes (œ 100 TiB) is the pixel-wise prediction of membranes. The time it would typically take to process such a volume using a convolutional neural network (CNN) with a sliding window approach is in the order of years on a current GPU. With sliding windows, however, a lot of redundant computations are carried out. In this paper, we present an extension to the Caffe library to increase throughput by predicting many pixels at once. On a sliding window network successfully used for membrane classification, we show that our method achieves a speedup of up to 57×, maintaining identical prediction results.

View Publication Page
11/05/15 | Crowdsourcing the creation of image segmentation algorithms for connectomics.
Arganda-Carreras I, Turaga SC, Berger DR, Ciresan D, Giusti A, Gambardella LM, Schmidhuber J, Laptev D, Dwivedi S, Buhmann JM
Frontiers in Neuroanatomy. 2015 Nov 05;9:142. doi: 10.3389/fnana.2015.00142

To stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This “deep learning” approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge.

View Publication Page
01/13/15 | Mapping social behavior-induced brain activation at cellular resolution in the mouse.
Kim Y, Venkataraju KU, Pradhan K, Mende C, Taranda J, Turaga SC, Arganda-Carreras I, Ng L, Hawrylycz MJ, Rockland KS, Seung HS, Osten P
Cell Reports. 2015 Jan 13;10(2):292-305. doi: 10.1016/j.celrep.2014.12.014

Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

View Publication Page
05/15/14 | Space-time wiring specificity supports direction selectivity in the retina.
Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M, Turaga SC, Purcaro M, Balkam M, Robinson A, Behabadi BF, Campos M, Denk W, Seung HS, EyeWirers
Nature. 2014 May 15;509(7500):331-6. doi: 10.1038/nature13240

How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of 'citizen neuroscientists'. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such 'space-time wiring specificity' could endow SAC dendrites with receptive fields that are oriented in space-time and therefore respond selectively to stimuli that move in the outward direction from the soma.

View Publication Page
08/08/13 | Connectomic reconstruction of the inner plexiform layer in the mouse retina.
Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W
Nature. 2013 Aug 8;500(7461):168-74. doi: 10.1038/nature12346

Comprehensive high-resolution structural maps are central to functional exploration and understanding in biology. For the nervous system, in which high resolution and large spatial extent are both needed, such maps are scarce as they challenge data acquisition and analysis capabilities. Here we present for the mouse inner plexiform layer–the main computational neuropil region in the mammalian retina–the dense reconstruction of 950 neurons and their mutual contacts. This was achieved by applying a combination of crowd-sourced manual annotation and machine-learning-based volume segmentation to serial block-face electron microscopy data. We characterize a new type of retinal bipolar interneuron and show that we can subdivide a known type based on connectivity. Circuit motifs that emerge from our data indicate a functional mechanism for a known cellular response in a ganglion cell that detects localized motion, and predict that another ganglion cell is motion sensitive.

View Publication Page
01/01/13 | Inferring neural population dynamics from multiple partial recordings of the same neural circuit.
Turaga SC, Buesing L, Packer AM, Dalgleish H, Pettit N, Häusser M, Macke JH
Advances in Neural Information Processing Systems (NIPS) . 2013;26:

Simultaneous recordings of the activity of large neural populations are extremely valuable as they can be used to infer the dynamics and interactions of neurons in a local circuit, shedding light on the computations performed. It is now possible to measure the activity of hundreds of neurons using 2-photon calcium imaging. However, many computations are thought to involve circuits consisting of thousands of neurons, such as cortical barrels in rodent somatosensory cortex. Here we contribute a statistical method for stitching" together sequentially imaged sets of neurons into one model by phrasing the problem as fitting a latent dynamical system with missing observations. This method allows us to substantially expand the population-sizes for which population dynamics can be characterized---beyond the number of simultaneously imaged neurons. In particular, we demonstrate using recordings in mouse somatosensory cortex that this method makes it possible to predict noise correlations between non-simultaneously recorded neuron pairs.

View Publication Page