Filter
Associated Project Team
- Remove Integrative Imaging filter Integrative Imaging
Publication Date
Type of Publication
3 Publications
Showing 1-3 of 3 resultsNo abstract available.
The past 20 years have seen a paradigm-shifting explosion of new optical microscopy technologies aimed at uncovering fundamental biological insights. Yet only a small portion 'cross the finish line' into wide adoption by the life science community. We contend that this is not primarily due to a lack of technical prowess or utility. Rather, many risks can conspire to derail the adoption of potentially disruptive technologies. One way to address these challenges is to de-risk paradigm-shifting inventions within open-access technology incubators. Here we detail the framework needed to shepherd innovative microscopy techniques through the often-treacherous adoption landscape to enable transformative scientific output.
Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodeling, and timely polysaccharide deposition, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM) we studied cell plate development in four dimensions, through the behavior of the cytokinesis specific GTPase YFP-RABA2a vesicles. We monitored the entire length of cell plate development, from its first emergence, with the aid of YFP-RABA2a, both in the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable, cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.