Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Xu Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4064 Publications

Showing 3191-3200 of 4064 results
07/20/09 | Simplified approach to diffraction tomography in optical microscopy.
Fiolka R, Wicker K, Heintzmann R, Stemmer A
Optics Express. 2009 Jul 20;17(15):12407-17

We present a novel microscopy technique to measure the scattered wavefront emitted from an optically transparent microscopic object. The complex amplitude is decoded via phase stepping in a common-path interferometer, enabling high mechanical stability. We demonstrate theoretically and practically that the incoherent summation of multiple illumination directions into a single image increases the resolving power and facilitates image reconstruction in diffraction tomography. We propose a slice-by-slice object-scatter extraction algorithm entirely based in real space in combination with ordinary z-stepping. Thereby the computational complexity affiliated with tomographic methods is significantly reduced. Using the first order Born approximation for weakly scattering objects it is possible to obtain estimates of the scattering density from the exitwaves.

View Publication Page
01/10/12 | Simplified models for LHC new physics searches
Alves D, Arkani-Hamed N, Arora S, Bai Y, Baumgart M, Berger J, Buckley M, Butler B, Chang S, Cheng H, Cheung C, Chivukula RS, Cho WS, Cotta R, D’Alfonso M, Hedri SE, Essig R, Evans JA, Fitzpatrick L, Fox P, Franceschini R, Freitas A, Gainer JS, Gershtein Y, Gray R, Gregoire T, Gripaios B, Gunion J, Han T, Haas A, Hansson P, Hewett J, Hits D, Hubisz J, Izaguirre E, Kaplan J, Katz E, Kilic C, Kim H, Kitano R, Koay SA, Ko P, Krohn D, Kuflik E, Lewis I, Lisanti M, Liu T, Liu Z, Lu R, Luty M, Meade P, Morrissey D, Mrenna S, Nojiri M, Okui T, Padhi S, Papucci M, Park M, Park M, Perelstein M, Peskin M, Phalen D, Rehermann K, Rentala V, Roy T, Ruderman JT, Sanz V, Schmaltz M, Schnetzer S, Schuster P, Schwaller P, Schwartz MD, Schwartzman A, Shao J, Shelton J, Shih D, Shu J, Silverstein D, Simmons E, Somalwar S, Spannowsky M, Spethmann C, Strassler M, Su S, Tait T, Thomas B, Thomas S, Toro N, Volansky T, Wacker J, Waltenberger W, Yavin I, Yu F, Zhao Y, Zurek K, LHC New Physics Working Group
Journal of Physics G: Nuclear and Particle Physics. Jan-10-2012;39(10):105005. doi: 10.1088/0954-3899/39/10/105005

This document proposes a collection of simplified models relevant to the design of new-physics searches at the Large Hadron Collider (LHC) and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50–500 pb−1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

View Publication Page
08/17/17 | Simulating extracted connectomes.
Gornet J, Scheffer LK
bioRxiv. 2017 Aug 17:. doi: 10.1101/177113

Connectomes derived from volume EM imaging of the brain can generate detailed physical models of every neuron, and simulators such as NEURON or GENESIS are designed to work with such models. In principal, combining these technologies, plus transmitter and channel models, should allow detailed and accurate simulation of real neural circuits. Here we experiment with this combination, using a well-studied system (motion detection in Drosophila. Since simulation requires both the physical geometry (which we have) and the models of the synapses (which are not currently available), we built approximate synapses corresponding to their known and estimated function. Once we did so, we reproduced direction selectivity in T4 cells, one of the main functions of this neural circuit. This verified the basic functionality of both extraction and simulations, and provided a biologically relevant computation we could use in further experiments. We then compared models with different degrees of physical realism, from full detailed models down to models consisting of a single node, to examine the tradeoff of simulation resources required versus accuracy achieved. Our results show that much simpler models may be adequate, at least in the case of medulla neurons in Drosophila. Such models can be easily derived from fully detailed models, and result in simulations that are much smaller, much faster, and accurate enough for many purposes. Biologically, we show that a lumped neuron model reproduces the main motion detector operation, confirming the result of Gruntman, that dendritic compution is not required for this function.

View Publication Page
Simpson Lab
09/09/17 | Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila.
Hampel S, McKellar CE, Simpson JH, Seeds AM
eLife. 2017 Sep 09;6:. doi: 10.7554/eLife.28804

A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al. 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response.

View Publication Page
10/06/20 | Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
Suarez E, Lettieri S, Stringer CA, Zwier MC, Subramanian SR, Chong LT, Zuckerman DM
Journal of chemical theory and computation;10:2658–2667
10/06/20 | Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
Suarez E, Lettieri S, Stringer CA, Zwier MC, Subramanian SR, Chong LT, Zuckerman DM
Journal of chemical theory and computation;10:2658–2667
10/06/20 | Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
Suarez E, Lettieri S, Stringer CA, Zwier MC, Subramanian SR, Chong LT, Zuckerman DM
Journal of chemical theory and computation;10:2658–2667
03/03/14 | Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
Suarez E, Lettieri S, Stringer CA, Zwier MC, Subramanian SR, Chong LT, Zuckerman DM
Journal of Chemical Theory and Computation. 03/2014;10:2658–2667. doi: https://doi.org/10.1021/ct401065r

Equilibrium formally can be represented as an ensemble of uncoupled systems undergoing unbiased dynamics in which detailed balance is maintained. Many nonequilibrium processes can be described by suitable subsets of the equilibrium ensemble. Here, we employ the “weighted ensemble” (WE) simulation protocol [Huber and Kim, Biophys. J.1996, 70, 97–110] to generate equilibrium trajectory ensembles and extract nonequilibrium subsets for computing kinetic quantities. States do not need to be chosen in advance. The procedure formally allows estimation of kinetic rates between arbitrary states chosen after the simulation, along with their equilibrium populations. We also describe a related history-dependent matrix procedure for estimating equilibrium and nonequilibrium observables when phase space has been divided into arbitrary non-Markovian regions, whether in WE or ordinary simulation. In this proof-of-principle study, these methods are successfully applied and validated on two molecular systems: explicitly solvated methane association and the implicitly solvated Ala4 peptide. We comment on challenges remaining in WE calculations.

 

View Publication Page
01/20/16 | Simultaneous denoising, deconvolution, and demixing of calcium imaging data.
Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, Lacefield C, Yang W, Ahrens M, Bruno R, Jessell TM, Peterka DS, Yuste R, Paninski L
Neuron. 2016 Jan 20;89(2):285-99. doi: 10.1016/j.neuron.2015.11.037

We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multi-neuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data.

View Publication Page
04/25/23 | Simultaneous photoactivation and high-speed structural tracking reveal diffusion-dominated motion in the endoplasmic reticulum
Matteo Dora , Christopher J. Obara , Tim Abel , Jennifer Lippincott-Schwarz , David Holcman
bioRxiv. 2023 Apr 25:. doi: 10.1101/2023.04.23.537908

The endoplasmic reticulum (ER) is a structurally complex, membrane-enclosed compartment that stretches from the nuclear envelope to the extreme periphery of eukaryotic cells. The organelle is crucial for numerous distinct cellular processes, but how these processes are spatially regulated within the structure is unclear. Traditional imaging-based approaches to understanding protein dynamics within the organelle are limited by the convoluted structure and rapid movement of molecular components. Here, we introduce a combinatorial imaging and machine learning-assisted image analysis approach to track the motion of photoactivated proteins within the ER of live cells. We find that simultaneous knowledge of the underlying ER structure is required to accurately analyze fluorescently-tagged protein redistribution, and after appropriate structural calibration we see all proteins assayed show signatures of Brownian diffusion-dominated motion over micron spatial scales. Remarkably, we find that in some cells the ER structure can be explored in a highly asymmetric manner, likely as a result of uneven connectivity within the organelle. This remains true independently of the size, topology, or folding state of the fluorescently-tagged molecules, suggesting a potential role for ER connectivity in driving spatially regulated biology in eukaryotes.

View Publication Page