Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
To successfully forage for food, animals must balance the energetic cost of searching for food sources with the energetic benefit of exploiting those sources. While the Marginal Value Theorem provides one normative account of this balance by specifying that a forager should leave a food patch when its energetic yield falls below the average yield of other patches in the environment, it assumes the presence of other readily reachable patches. In natural settings, however, a forager does not know whether it will encounter additional food patches, and it must balance potential energetic costs and benefits accordingly. Upon first encountering a patch of food, it faces a decision of whether and when to leave the patch in search of better options, and when to return if no better options are found. Here, we explore how a forager should structure its search for new food patches when the existence of those patches is unknown, and when searching for those patches requires energy that can only be harvested from a single known food patch. We identify conditions under which it is more favorable to explore the environment in several successive trips rather than in a single long exploration, and we show how the optimal sequence of trips depends on the forager’s beliefs about the distribution and nutritional content of food patches in the environment. This optimal strategy is well approximated by a local decision that can be implemented by a simple neural circuit architecture. Together, this work highlights how energetic constraints and prior beliefs shape optimal foraging strategies, and how such strategies can be approximated by simple neural networks that implement local decision rules.