Main Menu (Mobile)- Block

Main Menu - Block

Former Labs

janelia7_blocks-janelia7_fake_breadcrumb | block
Our Research / Former Labs
node_title | node_title
Former Labs
node_body | node_body

View the web pages of former Janelia labs:

Baker Lab Chklovskii Lab Clayton Lab
Cui Lab Eddy/Rivas Lab Egnor Lab
Fetter Lab Freeman Lab Gustafsson Lab
Jain Lab Kerr Lab Murphy Lab
Myers Lab Pastalkova Lab Peng Lab
Riddiford Lab Rinberg Lab Simpson Lab
Tjian Lab Zuker Lab  

Baker Lab

September 1, 2008 - August 31, 2016

We study the genetic basis of the neural circuits underlying innate behaviors and how these circuits function in the behaving animal. We use the mating behavior of the fruit fly Drosophila melanogaster as a model.

Back to top

Chklovskii Lab

July 2007 - July 2014

How does electrical activity in neuronal circuits give rise to intelligent behavior? To answer this question, we are pursuing two synergistic research directions.

Back to top

Clayton Lab

September 2008 - February 2014

Our laboratory has a long-standing and continuing interest in this extrachromosomal genome, mainly in the areas of mtDNA replication and transcription.

Back to top

Cui Lab

September 2010 - August 2015

The advance of optical technologies has revolutionized a broad range of biomedical research fields. During the past two decades, novel optical imaging techniques have been developed to provide unprecedented resolution, sensitivity, and speed. However, the optical penetration depth in tissues remains very limited.

Back to top

Eddy/Rivas Lab

July 2006 - June 2015

Genome sequences are now known for thousands of different species. We are at a remarkable time in biology where at last we can look at the "source code" for life—the DNA sequences that specify development, regulation, and function of organisms—but we are still far from adequately understanding how to read this vast trove of encoded information or being able to reconstruct how it evolved.

Back to top

Egnor Lab

January 2008 - January 2015

Roian Egnor uses multi-generational groups of socially-housed mice to study the neural basis of complex vocal and social behavior.

Back to top

Fetter Lab

May 2012 - September 2015

The Fetter lab is interested in developing tools and techniques to faithfully preserve the in vivo biological structure and maximize information content at nanometer resolution for the next generation of Drosophila EM connectomes.

Back to top

Freeman Lab

March 2014 - October 2016

Exploring neural computation in behaving animals at the scale of large populations and entire brains, through a combination of collaborative data analysis and experimental design across multiple model systems, and developing technology for modern computational science.

Back to top

Gustafsson Lab

August 2008 - April 2011

The Gustafsson Lab was dedicated to creating new forms of light microscopy for biological imaging.

Back to top

Jain Lab

February 2011 - January 2014

Electron microscopy (EM) is still the best technique for producing data from which one can unambiguously determine the complete synaptic connectivity of neuronal assemblies.

Back to top

Kerr Lab

September 2006 - August 2013

How does an organism compute its behavior?  The Kerr lab seeks to answer this question for one of the simplest model organisms, the nematode worm Caenorhabditis elegans.

Back to top

Murphy Lab

September 2009 - August 2015

Determining the properties and salience of sensory cues is fundamental to the survival and characteristic behavior of most, if not all, organisms. Our lab identifies mechanisms that underlie the sensitivity and selectivity with which neurons in the mammalian nervous system respond to visual stimuli.

Back to top

Myers Lab

September 2005 - May 2012

The Myers Lab is developing algorithms and software for the automatic interpretation of images produced by light and electron microscopy of stained samples, with an emphasis on building 3D and 4D "atlases" of brains, developing organisms, and cellular processes.

Back to top

Pastalkova Lab

January 1, 2010 - August 31, 2016

The hippocampus is the region of the brain that is necessary for the formation and storage of episodic memories - unique events we experience in our lives as "I just met my best friend and we went for a walk." We study what firing patterns of hippocampal neurons are responsible for encoding and recall of these memories.

Back to top

Peng Lab

November 2007 - August 2012

Hanchuan Peng develops bioimage analysis and informatics techniques. He uses these techniques to mine and fuse knowledge from three-dimensional animal brain images, at both micrometer and nanometer scales. His group is building 3D neuronal atlases of brains – incorporating neuron distribution, projection, and connection statistics and mapping functional data of neurons.

Back to top

Riddiford Lab

October 1, 2007 - September 30, 2015

We are interested in how the developmental hormones, ecdysone and juvenile hormone, interact to allow and orchestrate metamorphosis.

Back to top

Rinberg Lab

August 2006 - August 2012

Our lab is using electrophysiology, optogenetics, and psychophysics to understand the principles of sensory information processing. Specifically, we are focused on two questions: 1) how is odor information coded in the brain of the awake, behaving mouse? And 2) how is information relevant to animal behavior extracted by the brain? In short, we want to know what the mouse’s nose tells its brain.

Back to top

Simpson Lab

July 2006 - July 2015

We use genetic tools and screening strategies to identify the specific neurons necessary and sufficient to control grooming and feeding, behaviors which were chosen for their sequential progression and cue integration properties.

Back to top

Tjian Lab

April 1, 2009 - September 1, 2016

Robert Tjian is interested in the biochemistry of gene regulation in humans and animals. In particular, what is the nature of the molecular machinery that controls the turning up and down of gene expression in human cells, and how does disruption of this highly regulated process lead to various disease states?

Back to top

Zuker Lab

July 2009 - February 2015

Our long-term goal is to elucidate mechanisms used for signal transduction and information processing in sensory systems and to understand how the senses create an internal representation of the outside world.

Back to top