Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Basic transcription element binding protein (BTEB) is a member of the Krüppel family of zinc finger transcription factors. It has been shown that BTEB plays a role in promoting neuronal process formation during postembryonic development. In the present study, the biochemical properties, transactivation function, and the developmental and hormone-regulated expression of BTEB in Xenopus laevis (xBTEB) are described. xBTEB binds the GC-rich basic transcription element (BTE) with high affinity and functions as a transcriptional activator on promoters containing multiple or single GC boxes. xBTEB mRNA levels increase in the tadpole brain, intestine and tail during metamorphosis, and are correlated with tissue-specific morphological and biochemical transformations. xBTEB mRNA expression can be induced precociously in premetamorphic tadpole tissues by treatment with thyroid hormone. In situ hybridization histochemistry showed that thyroid hormone upregulates xBTEB mRNA throughout the brain of premetamorphic tadpoles, with the highest expression found in the subventricular zones of the telencephalon, diencephalon, optic tectum, cerebellum and spinal cord. xBTEB protein parallels changes in its mRNA, and it was found that xBTEB is not expressed in mitotic cells in the developing brain, but is expressed just distal to the proliferative zone, supporting the hypothesis that this protein plays a role in neural cell differentiation.