Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
A wireless-controlled miniature rectilinear ion trap mass spectrometer system, total weight with batteries 5.0 kg, consuming less than 35 W of power, and having dimensions of 22 cm in length by 12 cm in width by 18 cm in height, is characterized. The design and construction of the mass spectrometer including mass analyzer, vacuum system, electronics system, and data acquisition and processing systems, is detailed. The mass spectrometer is compatible with various types of ionization sources including a glow discharge electron impact ionization source used in the internal ionization mode, and various atmospheric pressure ionization sources, including electrospray ionization, atmospheric pressure chemical ionization, and desorption electrospray ionization, which are employed for external, atmospheric pressure ionization. These external sources are coupled to the miniature mass spectrometer via a capillary interface that is operated in a discontinuous fashion (discontinuous atmospheric pressure interface) to maximize ion transport. The performance of the mass spectrometer for large and small molecules is characterized. Limits of detection in the parts-per-billion range were obtained for selected compounds examined using both the internal ionization and external ionization modes. Tandem mass spectrometry and fast in situ analysis capabilities are also demonstrated using a variety of compounds and ionization sources. Protein molecules are analyzed as the multiply protonated molecules with mass/charge ratios up to 1500 Da/charge.