Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
What is the relationship between variation that segregates within natural populations and the differences that distinguish species? Many studies over the past century have demonstrated that most of the genetic variation within natural populations that contributes to quantitative traits causes relatively small phenotypic effects. In contrast, the genetic causes of quantitative differences between species are at least sometimes caused by few loci of relatively large effect. In addition, most of the results from evolutionary developmental biology are often discussed as though changes at just a few important 'molecular toolbox' genes provide the key clues to morphological evolution. On the face of it, these divergent results seem incompatible and call into question the neo-Darwinian view that differences between species emerge from precisely the same kinds of variants that segregate much of the time in natural populations. One prediction from the classical model is that many different genes can evolve to generate similar phenotypes. I discuss our studies that demonstrate that similar phenotypes have evolved in multiple lineages of Drosophila by evolution of the same gene, shavenbaby/ovo. This evidence for parallel evolution suggests that svb occupies a privileged position in the developmental network patterning larval trichomes that makes it a favourable target of evolutionary change.