Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
It is shown experimentally that the interaction between electrons strongly influences the chemical potential of the two-dimensional (2D) electron gas. At sufficiently low temperatures and in high magnetic fields, regions of filling factor appear where (i) the chemical potential μ diminishes with increasing carrier density, i.e., the thermodynamic density of states is negative; (ii) the derivative ∂μ/∂H (H is the magnetic field) is considerably higher than the maximum value for a noninteracting 2D electron gas. Using these results, we have estimated that the energy of the e-e interaction in Si inversion layers in a magnetic field is about 1 order of magnitude less than the classical Coulomb interaction calculated for Si metal-oxide-semiconductor field-effect transistors.