Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
The correction of bias in magnetic resonance images is an important problem in medical image processing. Most previous approaches have used a maximum likelihood method to increase the likelihood of the pixels in a single image by adaptively estimating a correction to the unknown image bias field. The pixel likelihoods are defined either in terms of a pre-existing tissue model, or non-parametrically in terms of the image’s own pixel values. In both cases, the specific location of a pixel in the image is not used to calculate the likelihoods. We suggest a new approach in which we simultaneously eliminate the bias from a set of images of the same anatomy, but from different patients. We use the statistics from the same location across different images, rather than within an image, to eliminate bias fields from all of the images simultaneously. The method builds a multi-resolution non-parametric tissue model conditioned on image location while eliminating the bias fields associated with the original image set. We present experiments on both synthetic and real MR data sets, and present comparisons with other methods.