Main Menu (Mobile)- Block
- Our Research
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
Early stages of visual processing are thought to decorrelate, or whiten, the incoming temporally varying signals. Because the typical correlation time of natural stimuli, as well as the extent of temporal receptive fields of lateral geniculate nucleus (LGN) neurons, is much greater than neuronal time constants, such decorrelation must be done in stages combining contributions of multiple neurons. We propose to model temporal decorrelation in the visual pathway with the lattice filter, a signal processing device for stage-wise decorrelation of temporal signals. The stage-wise architecture of the lattice filter maps naturally onto the visual pathway (photoreceptors -> bipolar cells -> retinal ganglion cells -> LGN) and its filter weights can be learned using Hebbian rules in a stage-wise sequential manner. Moreover, predictions of neural activity from the lattice filter model are consistent with physiological measurements in LGN neurons and fruit fly second-order visual neurons. Therefore, the lattice filter model is a useful abstraction that may help unravel visual system function.