Main Menu (Mobile)- Block
- Our Research
-
Support Teams
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Integrative Imaging
- Media Prep
- Molecular Genomics
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Integrative Imaging
- Media Prep
- Molecular Genomics
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
British Machine Vision Conference. 2016 Sep 19
Mapping auto-context decision forests to deep ConvNets for semantic segmentation. Kainmueller Lab

Richmond DL, Kainmueller D, Yang MY, Myers EW, Rother C
Note: Research in this publication was not performed at Janelia.
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
In this paper, we propose a mapping from the Auto-context model to a deep Convolutional Neural Network (ConvNet), bridging the gap be- tween these two models, and helping address the challenge of training ConvNets with limited training data.
node:body | entity_field
janelia7_blocks-janelia7_biblio_tools | block