Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
Recent success in training artificial agents and robots derives from a combination of direct learning of behavioral policies and indirect learning via value functions. Policy learning and value learning employ distinct algorithms that optimize behavioral performance and reward prediction, respectively. In animals, behavioral learning and the role of mesolimbic dopamine signaling have been extensively evaluated with respect to reward prediction; however, to date there has been little consideration of how direct policy learning might inform our understanding. Here we used a comprehensive dataset of orofacial and body movements to understand how behavioral policies evolve as naive, head-restrained mice learned a trace conditioning paradigm. Individual differences in initial dopaminergic reward responses correlated with the emergence of learned behavioral policy, but not the emergence of putative value encoding for a predictive cue. Likewise, physiologically-calibrated manipulations of mesolimbic dopamine produced multiple effects inconsistent with value learning but predicted by a neural network-based model that used dopamine signals to set an adaptive rate, not an error signal, for behavioral policy learning. This work provides strong evidence that phasic dopamine activity can regulate direct learning of behavioral policies, expanding the explanatory power of reinforcement learning models for animal learning.
bioRxiv PrePrint https://doi.org/10.1101/2021.05.31.446464