Main Menu (Mobile)- Block
- Our Research
-
Support Teams
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Light Microscopy
- Media Prep
- Molecular Biology
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Light Microscopy
- Media Prep
- Molecular Biology
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Using complementary oligonucleotide probes, we have isolated the nuclear gene for the RNA moiety of RNAase MRP; it is present as a single copy and encodes an uncapped primary transcript of 275 nucleotides. Direct sequence analysis revealed that the 136 nucleotide RNA that copurifies with RNAase MRP represents the 3’ half of the 275 nucleotide primary transcript. The 5’-flanking region of the gene has putative transcriptional control elements homologous to the promoters of RNA polymerase II-transcribed U-series snRNA genes; however, the coding region possesses a box A sequence and terminates at four T residues, both features characteristic of polymerase III-transcribed genes. A decamer sequence, 5’-CGA-CCCCUCC-3’, complementary to a conserved sequence adjacent to the enzymatic cleavage site on the mitochondrial RNA substrate, is present in the RNAase MRP RNA. Isolation of a nuclear gene for the RNA component of a mitochondrial enzyme implies that nucleic acids can be transported across mitochondrial membranes.