Main Menu (Mobile)- Block
- Our Research
-
Support Teams
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Light Microscopy
- Media Prep
- Molecular Biology
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Light Microscopy
- Media Prep
- Molecular Biology
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Insect metamorphosis is a fascinating and highly successful biological adaptation, but there is much uncertainty as to how it evolved. Ancestral insect species did not undergo metamorphosis and there are still some existing species that lack metamorphosis or undergo only partial metamorphosis. Based on endocrine studies and morphological comparisons of the development of insect species with and without metamorphosis, a novel hypothesis for the evolution of metamorphosis is proposed. Changes in the endocrinology of development are central to this hypothesis. The three stages of the ancestral insect species-pronymph, nymph and adult-are proposed to be equivalent to the larva, pupa and adult stages of insects with complete metamorphosis. This proposal has general implications for insect developmental biology.