Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
A key step in the evolution of sociality is the abandonment of independent breeding in favour of helping. In cooperatively breeding vertebrates and primitively eusocial insects, helpers are capable of leaving the group and reproducing independently, and yet many do not. A fundamental question therefore is why do helpers help? Helping behaviour may be explained by constraints on independent reproduction and/or benefits to individuals from helping. Here, we examine simultaneously the reproductive constraints and fitness benefits underlying helping behaviour in a primitively eusocial paper wasp. We gave 31 helpers the opportunity to become egg-layers on their natal nests by removing nestmates. This allowed us to determine whether helpers are reproductively constrained in any way. We found that age strongly influenced whether an ex-helper could become an egg-layer, such that young ex-helpers could become egg-layers while old ex-helpers were less able. These differential reproductive constraints enabled us to make predictions about the behaviours of ex-helpers, depending on the relative importance of direct and indirect fitness benefits. We found little evidence that indirect fitness benefits explain helping behaviour, as 71 per cent of ex-helpers left their nests before the end of the experiment. In the absence of reproductive constraints, however, young helpers value direct fitness opportunities over indirect fitness. We conclude that a combination of reproductive constraints and potential for future direct reproduction explain helping behaviour in this species. Testing several competing explanations for helping behaviour simultaneously promises to advance our understanding of social behaviour in animal groups.