Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
C. elegans, a roundworm in soil is widely used in studying animal development and aging, cell differentiation, etc. Recentlv, high-resolution fluorescence images of C. elegans have become available, introducing several new image analysis applications. One problem is that worm bodies usually curve greatly in images, thus it is highly desired to straighten worms so that they can be compared easily under the same canonical coordinate system. We develop a worm straightening algorithm (WSA) using a cutting-plane restacking method, which aggregates the linear rotation transforms of a continuous sequence of cutting lines/planes orthogonal to the "backbone" of a worm to best approximate the nonlinearly bended worm body. We formulate the backbone as a parametric form of cubic spline of a series of control points. We develop two minimum-spanning-tree based methods to automatically determine the locations of control points. Our experimental methods show that our approach can effectively straighten both 2D and 3D worm images.