Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
Delineating cell lineages is a prerequisite for interrogating the genesis of cell types. CRISPR/Cas9 can edit genomic sequence during development which enables to trace cell lineages. Recent studies have demonstrated the feasibility of this idea. However, the optimality of the encoding or reconstruction processes has not been adequately addressed. Here, we surveyed a multitude of reconstruction algorithms and found hierarchical clustering, with a metric based on the number of shared Cas9 edits, delivers the best reconstruction. However, the trackable depth is ultimately limited by the number of available coding units that typically decrease exponentially across cell generations. To overcome this limit, we established two strategies that better sustain the coding capacity. One involves controlling target availability via use of parallel gRNA cascades, whereas the other strategy exploits adjustable Cas9/gRNA editing rates. In summary, we provide a theoretical basis in understanding, designing, and analyzing robust CRISPR barcodes for dense reconstruction of protracted cell lineages.