Main Menu (Mobile)- Block
- Our Research
-
Support Teams
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Drosophila Resources
- Electron Microscopy
- Flow Cytometry Shared Resource (FCSR)
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Light Microscopy
- Media Prep
- Molecular Biology
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Drosophila Resources
- Electron Microscopy
- Flow Cytometry Shared Resource (FCSR)
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Light Microscopy
- Media Prep
- Molecular Biology
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
Optics Express. 2019 Nov 25;27(24):35830-35841. doi: 10.1364/OE.27.035830
Two-photon imaging with silicon photomultipliers. Turner LabPodgorski Lab

Modi MN, Daie K, Turner GC, Podgorski K
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
We compared performance of recently developed silicon photomultipliers (SiPMs) to GaAsP photomultiplier tubes (PMTs) for two-photon imaging of neural activity. Despite higher dark counts, SiPMs match or exceed the signal-to-noise ratio of PMTs at photon rates encountered in typical calcium imaging experiments due to their low pulse height variability. At higher photon rates encountered during high-speed voltage imaging, SiPMs substantially outperform PMTs.
PMID: 31878749 [PubMed - indexed for MEDLINE]
node:body | entity_field
bioRxiv PrePrint https://doi.org/10.1101/717850
janelia7_blocks-janelia7_biblio_authors | block
Janelia Authors
janelia7_blocks-janelia7_biblio_tools | block