Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

174 Janelia Publications

Showing 31-40 of 174 results
Your Criteria:
    10/01/21 | An adaptive optics module for deep tissue multiphoton imaging in vivo.
    Rodriguez C, Chen A, Rivera JA, Mohr MA, Liang Y, Natan RG, Sun W, Milkie DE, Bifano TG, Chen X, Ji N
    Nature Methods. 2021 Oct 01;18(10):1259-1264. doi: 10.1038/s41592-021-01279-0

    Understanding complex biological systems requires visualizing structures and processes deep within living organisms. We developed a compact adaptive optics module and incorporated it into two- and three-photon fluorescence microscopes, to measure and correct tissue-induced aberrations. We resolved synaptic structures in deep cortical and subcortical areas of the mouse brain, and demonstrated high-resolution imaging of neuronal structures and somatosensory-evoked calcium responses in the mouse spinal cord at great depths in vivo.

    View Publication Page
    07/16/21 | An inexpensive, high-precision, modular spherical treadmill setup optimized for experiments.
    Loesche F, Reiser MB
    Frontiers in Behavioral Neuroscience. 2021 Jul 16;15:689573. doi: 10.3389/fnbeh.2021.689573

    To pursue a more mechanistic understanding of the neural control of behavior, many neuroethologists study animal behavior in controlled laboratory environments. One popular approach is to measure the movements of restrained animals while presenting controlled sensory stimulation. This approach is especially powerful when applied to genetic model organisms, such as , where modern genetic tools enable unprecedented access to the nervous system for activity monitoring or targeted manipulation. While there is a long history of measuring the behavior of body- and head-fixed insects walking on an air-supported ball, the methods typically require complex setups with many custom components. Here we present a compact, simplified setup for these experiments that achieves high-performance at low cost. The simplified setup integrates existing hardware and software solutions with new component designs. We replaced expensive optomechanical and custom machined components with off-the-shelf and 3D-printed parts, and built the system around a low-cost camera that achieves 180 Hz imaging and an inexpensive tablet computer to present view-angle-corrected stimuli updated through a local network. We quantify the performance of the integrated system and characterize the visually guided behavior of flies in response to a range of visual stimuli. In this paper, we thoroughly document the improved system; the accompanying repository incorporates CAD files, parts lists, source code, and detailed instructions. We detail a complete ~$300 system, including a cold-anesthesia tethering stage, that is ideal for hands-on teaching laboratories. This represents a nearly 50-fold cost reduction as compared to a typical system used in research laboratories, yet is fully featured and yields excellent performance. We report the current state of this system, which started with a 1-day teaching lab for which we built seven parallel setups and continues toward a setup in our lab for larger-scale analysis of visual-motor behavior in flies. Because of the simplicity, compactness, and low cost of this system, we believe that high-performance measurements of tethered insect behavior should now be widely accessible and suitable for integration into many systems. This access enables broad opportunities for comparative work across labs, species, and behavioral paradigms.

    View Publication Page
    11/01/21 | An open-access volume electron microscopy atlas of whole cells and tissues.
    Xu CS, Pang S, Shtengel G, Müller A, Ritter AT, Hoffman HK, Takemura S, Lu Z, Pasolli HA, Iyer N, Chung J, Bennett D, Weigel AV, Freeman M, Van Engelenburg SB, Walther TC, Farese RV, Lippincott-Schwartz J, Mellman I, Solimena M, Hess HF
    Nature. 2021 Nov 1;599(7883):147-51. doi: 10.1038/s41586-021-03992-4

    Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.

    View Publication Page
    05/13/21 | An open-source semi-automated robotics pipeline for embryo immunohistochemistry.
    Fuqua T, Jordan J, Halavatyi A, Tischer C, Richter K, Crocker J
    Scientific Reports. 2021 May 13;11(1):10314. doi: 10.1038/s41598-021-89676-5

    A significant challenge for developmental systems biology is balancing throughput with controlled conditions that minimize experimental artifacts. Large-scale developmental screens such as unbiased mutagenesis surveys have been limited in their applicability to embryonic systems, as the technologies for quantifying precise expression patterns in whole animals has not kept pace with other sequencing-based technologies. Here, we outline an open-source semi-automated pipeline to chemically fixate, stain, and 3D-image Drosophila embryos. Central to this pipeline is a liquid handling robot, Flyspresso, which automates the steps of classical embryo fixation and staining. We provide the schematics and an overview of the technology for an engineer or someone equivalently trained to reproduce and further improve upon Flyspresso, and highlight the Drosophila embryo fixation and colorimetric or antibody staining protocols. Additionally, we provide a detailed overview and stepwise protocol for our adaptive-feedback pipeline for automated embryo imaging on confocal microscopes. We demonstrate the efficiency of this pipeline compared to classical techniques, and how it can be repurposed or scaled to other protocols and biological systems. We hope our pipeline will serve as a platform for future research, allowing a broader community of users to build, execute, and share similar experiments.

    View Publication Page
    Romani LabSvoboda Lab
    06/01/21 | Attractor dynamics gate cortical information flow during decision-making.
    Finkelstein A, Fontolan L, Economo MN, Li N, Romani S, Svoboda K
    Nature Neuroscience. 2021 Jun 1;24(6):843-50. doi: 10.1038/s41593-021-00840-6

    Decisions are held in memory until enacted, which makes them potentially vulnerable to distracting sensory input. Gating of information flow from sensory to motor areas could protect memory from interference during decision-making, but the underlying network mechanisms are not understood. Here, we trained mice to detect optogenetic stimulation of the somatosensory cortex, with a delay separating sensation and action. During the delay, distracting stimuli lost influence on behavior over time, even though distractor-evoked neural activity percolated through the cortex without attenuation. Instead, choice-encoding activity in the motor cortex became progressively less sensitive to the impact of distractors. Reverse engineering of neural networks trained to reproduce motor cortex activity revealed that the reduction in sensitivity to distractors was caused by a growing separation in the neural activity space between attractors that encode alternative decisions. Our results show that communication between brain regions can be gated via attractor dynamics, which control the degree of commitment to an action.

    View Publication Page
    07/01/21 | Automatic Detection of Synaptic Partners in a Whole-Brain Drosophila EM Dataset
    Buhmann J, Sheridan A, Gerhard S, Krause R, Nguyen T, Heinrich L, Schlegel P, Lee WA, Wilson R, Saalfeld S, Jefferis G, Bock D, Turaga S, Cook M, Funke J
    Nature Methods. 2021 Jul 1;18(7):771-4. doi: 10.1038/s41592-021-01183-7

    The study of neural circuits requires the reconstruction of neurons and the identification of synaptic connections between them. To scale the reconstruction to the size of whole-brain datasets, semi-automatic methods are needed to solve those tasks. Here, we present an automatic method for synaptic partner identification in insect brains, which uses convolutional neural networks to identify post-synaptic sites and their pre-synaptic partners. The networks can be trained from human generated point annotations alone and requires only simple post-processing to obtain final predictions. We used our method to extract 244 million putative synaptic partners in the fifty-teravoxel full adult fly brain (FAFB) electron microscopy (EM) dataset and evaluated its accuracy on 146,643 synapses from 702 neurons with a total cable length of 312 mm in four different brain regions. The predicted synaptic connections can be used together with a neuron segmentation to infer a connectivity graph with high accuracy: 96% of edges between connected neurons are correctly classified as weakly connected (less than five synapses) and strongly connected (at least five synapses). Our synaptic partner predictions for the FAFB dataset are publicly available, together with a query library allowing automatic retrieval of up- and downstream neurons.

    View Publication Page
    12/09/21 | Bidirectional synaptic plasticity rapidly modifies hippocampal representations.
    Milstein AD, Li Y, Bittner KC, Grienberger C, Soltesz I, Magee JC, Romani S
    eLife. 2021 Dec 09;10:. doi: 10.7554/eLife.73046

    Learning requires neural adaptations thought to be mediated by activity-dependent synaptic plasticity. A relatively non-standard form of synaptic plasticity driven by dendritic calcium spikes, or plateau potentials, has been reported to underlie place field formation in rodent hippocampal CA1 neurons. Here we found that this behavioral timescale synaptic plasticity (BTSP) can also reshape existing place fields via bidirectional synaptic weight changes that depend on the temporal proximity of plateau potentials to pre-existing place fields. When evoked near an existing place field, plateau potentials induced less synaptic potentiation and more depression, suggesting BTSP might depend inversely on postsynaptic activation. However, manipulations of place cell membrane potential and computational modeling indicated that this anti-correlation actually results from a dependence on current synaptic weight such that weak inputs potentiate and strong inputs depress. A network model implementing this bidirectional synaptic learning rule suggested that BTSP enables population activity, rather than pairwise neuronal correlations, to drive neural adaptations to experience.

    View Publication Page
    02/10/21 | Biomolecular Condensates and Their Links to Cancer Progression.
    Cai D, Liu Z, Lippincott-Schwartz J
    Trends in Biochemical Sciences. 2021 Feb 10:. doi: 10.1016/j.tibs.2021.01.002

    Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.

    View Publication Page
    07/01/21 | Biomolecular Condensates and Their Links to Cancer Progression.
    Cai D, Liu Z, Lippincott-Schwartz J
    Trends in Biochemical Sciences. 2021 Jul 01;46(7):535-549. doi: 10.1016/j.tibs.2021.01.002

    Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.

    View Publication Page
    10/28/21 | Biosensors based on peptide exposure show single molecule conformations in live cells.
    Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, Grimm JB, Lavis LD, Elston TC, Hahn KM
    Cell. 2021 Oct 28;184(22):5670-5685. doi: 10.1016/j.cell.2021.09.026

    We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.

    View Publication Page