Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

20 Janelia Publications

Showing 11-20 of 20 results
Your Criteria:
    04/04/14 | Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages
    Nunez-Iglesias J, Kennedy R, Plaza SM, Chakraborty A, William T. Katz
    Frontiers in Neuroinformatics. 2014 Apr 4;8:34. doi: 10.3389/fninf.2014.00034

    The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them.

    View Publication Page
    01/01/10 | Increasing depth resolution of electron microscopy of neural circuits using sparse tomographic reconstruction.
    Veeraraghavan A, Genkin AV, Vitaladevuni S, Scheffer L, Xu C, Hess H, Fetter R, Cantoni M, Knott G, Chklovskii DB
    Computer Vision and Pattern Recognition (CVPR). 2010:1767-74. doi: 10.1109/CVPR.2010.5539846
    01/01/12 | Minimizing manual image segmentation turn-around time for neuronal reconstruction by embracing uncertainty.
    Plaza SM, Scheffer LK, Saunders M
    PLoS One. 2012;7:e44448. doi: 10.1371/journal.pone.0044448

    The ability to automatically segment an image into distinct regions is a critical aspect in many visual processing applications. Because inaccuracies often exist in automatic segmentation, manual segmentation is necessary in some application domains to correct mistakes, such as required in the reconstruction of neuronal processes from microscopic images. The goal of the automated segmentation tool is traditionally to produce the highest-quality segmentation, where quality is measured by the similarity to actual ground truth, so as to minimize the volume of manual correction necessary. Manual correction is generally orders-of-magnitude more time consuming than automated segmentation, often making handling large images intractable. Therefore, we propose a more relevant goal: minimizing the turn-around time of automated/manual segmentation while attaining a level of similarity with ground truth. It is not always necessary to inspect every aspect of an image to generate a useful segmentation. As such, we propose a strategy to guide manual segmentation to the most uncertain parts of segmentation. Our contributions include 1) a probabilistic measure that evaluates segmentation without ground truth and 2) a methodology that leverages these probabilistic measures to significantly reduce manual correction while maintaining segmentation quality.

    View Publication Page
    01/31/17 | Multicut brings automated neurite segmentation closer to human performance.
    Beier T, Pape C, Rahaman N, Prange T, Berg S, Bock DD, Cardona A, Knott GW, Plaza SM, Scheffer LK, Koethe U, Kreshuk A, Hamprecht FA
    Nature Methods. 2017 Jan 31;14(2):101-102. doi: 10.1038/nmeth.4151
    10/01/10 | Semi-automated reconstruction of neural circuits using electron microscopy.
    Chklovskii DB, Vitaladevuni S, Scheffer LK
    Current Opinion in Neurobiology. 2010 Oct;20:667-75. doi: 10.1371/journal.pcbi.1001066

    Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience, and the focus of the nascent field of connectomics. Previously used to reconstruct the C. elegans wiring diagram, serial-section transmission electron microscopy (ssTEM) is a proven technique for the task. However, to reconstruct more complex circuits, ssTEM will require the automation of image processing. We review progress in the processing of electron microscopy images and, in particular, a semi-automated reconstruction pipeline deployed at Janelia. Drosophila circuits underlying identified behaviors are being reconstructed in the pipeline with the goal of generating a complete Drosophila connectome.

    View Publication Page
    06/06/14 | Small sample learning of superpixel classifiers for EM segmentation- extended version.
    Parag T, Plaza SM, Scheffer LK
    arXiv. 2014 Jun 6:arXiv:1406.1774 [cs.CV]

    Pixel and superpixel classifiers have become essential tools for EM segmentation algorithms. Training these classifiers remains a major bottleneck primarily due to the requirement of completely annotating the dataset which is tedious, error-prone and costly. In this paper, we propose an interactive learning scheme for the superpixel classifier for EM segmentation. Our algorithm is "active semi-supervised" because it requests the labels of a small number of examples from user and applies label propagation technique to generate these queries. Using only a small set (<20%) of all datapoints, the proposed algorithm consistently generates a classifier almost as accurate as that estimated from a complete groundtruth. We provide segmentation results on multiple datasets to show the strength of these classifiers.

    View Publication Page
    10/01/12 | Super-resolution using sparse representations over learned dictionaries: reconstruction of brain structure using electron microscopy.
    Hu T, Nunez-Iglesias J, Vitaladevuni S, Scheffer L, Xu S, Bolorizadeh M, Hess H, Fetter R, Chklovskii D
    arXiv.org . 2012 Oct:

    A central problem in neuroscience is reconstructing neuronal circuits on the synapse level. Due to a wide range of scales in brain architecture such reconstruction requires imaging that is both high-resolution and high-throughput. Existing electron microscopy (EM) techniques possess required resolution in the lateral plane and either high-throughput or high depth resolution but not both. Here, we exploit recent advances in unsupervised learning and signal processing to obtain high depth-resolution EM images computationally without sacrificing throughput. First, we show that the brain tissue can be represented as a sparse linear combination of localized basis functions that are learned using high-resolution datasets. We then develop compressive sensing-inspired techniques that can reconstruct the brain tissue from very few (typically 5) tomographic views of each section. This enables tracing of neuronal processes and, hence, high throughput reconstruction of neural circuits on the level of individual synapses.

    View Publication Page
    11/03/15 | Synaptic circuits and their variations within different columns in the visual system of Drosophila.
    Takemura S, Xu CS, Lu Z, Rivlin PK, Parag T, Olbris DJ, Plaza S, Zhao T, Katz WT, Umayam L, Weaver C, Hess HF, Horne JA, Nunez-Iglesias J, Aniceto R, Chang L, Lauchie S, Nasca A, Ogundeyi O, Sigmund C, Takemura S, Tran J, Langille C, Le Lacheur K, McLin S, Shinomiya A, Chklovskii DB, Meinertzhagen IA, Scheffer LK
    Proceedings of the National Academy of Sciences of the United States of America. 2015 Nov 3;112(44):13711-6. doi: 10.1073/pnas.1509820112

    We reconstructed the synaptic circuits of seven columns in the second neuropil or medulla behind the fly's compound eye. These neurons embody some of the most stereotyped circuits in one of the most miniaturized of animal brains. The reconstructions allow us, for the first time to our knowledge, to study variations between circuits in the medulla's neighboring columns. This variation in the number of synapses and the types of their synaptic partners has previously been little addressed because methods that visualize multiple circuits have not resolved detailed connections, and existing connectomic studies, which can see such connections, have not so far examined multiple reconstructions of the same circuit. Here, we address the omission by comparing the circuits common to all seven columns to assess variation in their connection strengths and the resultant rates of several different and distinct types of connection error. Error rates reveal that, overall, <1% of contacts are not part of a consensus circuit, and we classify those contacts that supplement (E+) or are missing from it (E-). Autapses, in which the same cell is both presynaptic and postsynaptic at the same synapse, are occasionally seen; two cells in particular, Dm9 and Mi1, form ≥20-fold more autapses than do other neurons. These results delimit the accuracy of developmental events that establish and normally maintain synaptic circuits with such precision, and thereby address the operation of such circuits. They also establish a precedent for error rates that will be required in the new science of connectomics.

    View Publication Page
    04/22/17 | The comprehensive connectome of a neural substrate for 'ON' motion detection in Drosophila.
    Takemura S, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA
    eLife. 2017 Apr 22;6:. doi: 10.7554/eLife.24394

    Analysing computations in neural circuits often uses simplified models because the actual neuronal implementation is not known. For example, a problem in vision, how the eye detects image motion, has long been analysed using Hassenstein-Reichardt (HR) detector or Barlow-Levick (BL) models. These both simulate motion detection well, but the exact neuronal circuits undertaking these tasks remain elusive. We reconstructed a comprehensive connectome of the circuits of Drosophila's motion-sensing T4 cells using a novel EM technique. We uncover complex T4 inputs and reveal that putative excitatory inputs cluster at T4's dendrite shafts, while inhibitory inputs localize to the bases. Consistent with our previous study, we reveal that Mi1 and Tm3 cells provide most synaptic contacts onto T4. We are, however, unable to reproduce the spatial offset between these cells reported previously. Our comprehensive connectome reveals complex circuits that include candidate anatomical substrates for both HR and BL types of motion detectors.

    View Publication Page
    03/02/14 | Toward large-scale connectome reconstructions.
    Plaza SM, Scheffer LK, Chklovskii DB
    Current Opinion in Neurobiology. 2014 Mar 2;25C:201-10. doi: 10.1016/j.conb.2014.01.019

    Recent results have shown the possibility of both reconstructing connectomes of small but biologically interesting circuits and extracting from these connectomes insights into their function. However, these reconstructions were heroic proof-of-concept experiments, requiring person-months of effort per neuron reconstructed, and will not scale to larger circuits, much less the brains of entire animals. In this paper we examine what will be required to generate and use substantially larger connectomes, finding five areas that need increased attention: firstly, imaging better suited to automatic reconstruction, with excellent z-resolution; secondly, automatic detection, validation, and measurement of synapses; thirdly, reconstruction methods that keep and use uncertainty metrics for every object, from initial images, through segmentation, reconstruction, and connectome queries; fourthly, processes that are fully incremental, so that the connectome may be used before it is fully complete; and finally, better tools for analysis of connectomes, once they are obtained.

    View Publication Page