Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

23 Janelia Publications

Showing 1-10 of 23 results
Your Criteria:
    08/03/18 | Anisotropic EM Segmentation by 3D Affinity Learning and Agglomeration
    Toufiq Parag , Fabian Tschopp , William Grisaitis , Srinivas C. Turaga , Xuewen Zhang , Brian Matejek , Lee Kamentsky , Jeff W. Lichtman , Hanspeter Pfister
    CoRR;abs/1707.08935:

    The field of connectomics has recently produced neuron wiring diagrams from relatively large brain regions from multiple animals. Most of these neural reconstructions were computed from isotropic (e.g., FIBSEM) or near isotropic (e.g., SBEM) data. In spite of the remarkable progress on algorithms in recent years, automatic dense reconstruction from anisotropic data remains a challenge for the connectomics community. One significant hurdle in the segmentation of anisotropic data is the difficulty in generating a suitable initial over-segmentation. In this study, we present a segmentation method for anisotropic EM data that agglomerates a 3D over-segmentation computed from the 3D affinity prediction. A 3D U-net is trained to predict 3D affinities by the MALIS approach. Experiments on multiple datasets demonstrates the strength and robustness of the proposed method for anisotropic EM segmentation.

     
     

    View Publication Page
    Svoboda Lab
    08/24/18 | Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell-type-specific circuits, forming an excitatory thalamo-cortico-thalamic loop via layer 1 apical tuft dendrites of layer 5B pyramidal tract type neurons.
    Guo K, Yamawaki N, Svoboda K, Shepherd GM
    The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2018 Aug 24;38(41):8787-97. doi: 10.1523/JNEUROSCI.1333-18.2018

    The anterolateral motor cortex (ALM) and ventromedial (VM) thalamus are functionally linked to support persistent activity during motor planning. We analyzed the underlying synaptic interconnections using optogenetics and electrophysiology in mice (♀/♂). In cortex, thalamocortical (TC) axons from VM excited VM-projecting pyramidal-tract (PT) neurons in layer 5B of ALM. These axons also strongly excited layer 2/3 neurons (which strongly excite PT neurons, as previously shown) but not VM-projecting corticothalamic (CT) neurons in layer 6. The strongest connections in the VM→PT circuit were localized to apical-tuft dendrites of PT neurons, in layer 1. These tuft inputs were selectively augmented after blocking hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. In thalamus, axons from ALM PT neurons excited ALM-projecting VM neurons, located medially in VM. These axons provided weak input to neurons in mediodorsal nucleus, and little or no input either to neurons in the GABAergic reticular thalamic nucleus or to neurons in VM projecting to primary motor cortex (M1). Conversely, M1 PT axons excited M1- but not ALM-projecting VM neurons. Our findings indicate, first, a set of cell-type-specific connections forming an excitatory thalamo-cortico-thalamic (T-C-T) loop for ALM↔VM communication and a circuit-level substrate for supporting reverberant activity in this system. Second, a key feature of this loop is the prominent involvement of layer 1 synapses onto apical dendrites, a subcellular compartment with distinct signaling properties, including HCN-mediated gain control. Third, the segregation of the ALM↔VM loop from M1-related circuits of VM adds cellular-level support for the concept of parallel pathway organization in the motor system.Anterolateral motor cortex (ALM), a higher-order motor area in the mouse, and ventromedial thalamus (VM) are anatomically and functionally linked, but their synaptic interconnections at the cellular level are unknown. Our results show that ALM pyramidal tract neurons monosynaptically excite ALM-projecting thalamocortical neurons in a medial subdivision of VM, and vice versa. The thalamo-cortico-thalamic loop formed by these recurrent connections constitutes a circuit-level substrate for supporting reverberant activity in this system.

    View Publication Page
    08/20/18 | Building a functional connectome of the central complex.
    Franconville R, Beron C, Jayaraman V
    eLife. 2018 Aug 20;7:. doi: 10.7554/eLife.37017

    The central complex is a highly conserved insect brain region composed of morphologically stereotyped neurons that arborize in distinctively shaped substructures. The region is implicated in a wide range of behaviors and several modeling studies have explored its circuit computations. Most studies have relied on assumptions about connectivity between neurons based on their overlap in light microscopy images. Here, we present an extensive functional connectome of Drosophila melanogaster's central complex at cell-type resolution. Using simultaneous optogenetic stimulation, calcium imaging and pharmacology, we tested the connectivity between 70 presynaptic-to-postsynaptic cell-type pairs. We identi1ed numerous inputs to the central complex, but only a small number of output channels. Additionally, the connectivity of this highly recurrent circuit appears to be sparser than anticipated from light microscopy images. Finally, the connectivity matrix highlights the potentially critical role of a class of bottleneck interneurons. All data is provided for interactive exploration on a website.

    View Publication Page
    08/29/18 | Cell-specific chemical delivery using a selective Nitroreductase-Nitroaryl pair.
    Gruber TD, Krishnamurthy C, Grimm JB, Tadross MR, Wysocki LM, Gartner ZJ, Lavis LD
    ACS Chemical Biology. 2018 Aug 29;13(10):1888-96. doi: 10.1021/acschembio.8b00524

    The utility of small molecules to probe or perturb biological systems is limited by the lack of cell-specificity. "Masking" the activity of small molecules using a general chemical modification and "unmasking" it only within target cells overcomes this limitation. To this end, we have developed a selective enzyme-substrate pair consisting of engineered variants of E. coli nitroreductase (NTR) and a 2-nitro- N-methylimidazolyl (NM) masking group. To discover and optimize this NTR-NM system, we synthesized a series of fluorogenic substrates containing different nitroaromatic masking groups, confirmed their stability in cells, and identified the best substrate for NTR. We then engineered the enzyme for improved activity in mammalian cells, ultimately yielding an enzyme variant (enhanced NTR, or eNTR) that possesses up to 100-fold increased activity over wild-type NTR. These improved NTR enzymes combined with the optimal NM masking group enable rapid, selective unmasking of dyes, indicators, and drugs to genetically defined populations of cells.

    View Publication Page
    08/02/18 | Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues.
    Asano SM, Gao R, Wassie AT, Tillberg PW, Chen F, Boyden ES
    Current Protocols in Cell Biology. 2018 Aug 02;80(1):e56. doi: 10.1002/cpcb.56

    Expansion microscopy (ExM) is a recently developed technique that enables nanoscale-resolution imaging of preserved cells and tissues on conventional diffraction-limited microscopes via isotropic physical expansion of the specimens before imaging. In ExM, biomolecules and/or fluorescent labels in the specimen are linked to a dense, expandable polymer matrix synthesized evenly throughout the specimen, which undergoes 3-dimensional expansion by ∼4.5 fold linearly when immersed in water. Since our first report, versions of ExM optimized for visualization of proteins, RNA, and other biomolecules have emerged. Here we describe best-practice, step-by-step ExM protocols for performing analysis of proteins (protein retention ExM, or proExM) as well as RNAs (expansion fluorescence in situ hybridization, or ExFISH), using chemicals and hardware found in a typical biology lab. Furthermore, a detailed protocol for handling and mounting expanded samples and for imaging them with confocal and light-sheet microscopes is provided. © 2018 by John Wiley & Sons, Inc.

    View Publication Page
    Ji LabGENIE
    08/20/18 | In vivo measurement of afferent activity with axon-specific calcium imaging.
    Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G, Xiao X, Ji N, Petreanu L, Tian L
    Nature Neuroscience. 2018 Aug 20:. doi: 10.1038/s41593-018-0211-4

    In vivo calcium imaging from axons provides direct interrogation of afferent neural activity, informing the neural representations that a local circuit receives. Unlike in somata and dendrites, axonal recording of neural activity-both electrically and optically-has been difficult to achieve, thus preventing comprehensive understanding of neuronal circuit function. Here we developed an active transportation strategy to enrich GCaMP6, a genetically encoded calcium indicator, uniformly in axons with sufficient brightness, signal-to-noise ratio, and photostability to allow robust, structure-specific imaging of presynaptic activity in awake mice. Axon-targeted GCaMP6 enables frame-to-frame correlation for motion correction in axons and permits subcellular-resolution recording of axonal activity in previously inaccessible deep-brain areas. We used axon-targeted GCaMP6 to record layer-specific local afferents without contamination from somata or from intermingled dendrites in the cortex. We expect that axon-targeted GCaMP6 will facilitate new applications in investigating afferent signals relayed by genetically defined neuronal populations within and across specific brain regions.

    View Publication Page
    08/07/18 | Inhibitory control of prefrontal cortex by the claustrum.
    Jackson J, Karnani MM, Zemelman BV, Burdakov D, Lee AK
    Neuron. 2018 Aug 07;99(5):1029-39. doi: 10.1016/j.neuron.2018.07.031

    The claustrum is a small subcortical nucleus that has extensive excitatory connections with many cortical areas. While the anatomical connectivity from the claustrum to the cortex has been studied intensively, the physiological effect and underlying circuit mechanisms of claustrocortical communication remain elusive. Here we show that the claustrum provides strong, widespread, and long-lasting feedforward inhibition of the prefrontal cortex (PFC) sufficient to silence ongoing neural activity. This claustrocortical feedforward inhibition was predominantly mediated by interneurons containing neuropeptide Y, and to a lesser extent those containing parvalbumin. Therefore, in contrast to other long-range excitatory inputs to the PFC, the claustrocortical pathway is designed to provide overall inhibition of cortical activity. This unique circuit organization allows the claustrum to rapidly and powerfully suppress cortical networks and suggests a distinct role for the claustrum in regulating cognitive processes in prefrontal circuits.

    View Publication Page
    08/01/18 | Interacting organelles.
    Cohen S, Valm AM, Lippincott-Schwartz J
    Current Opinion in Cell Biology. 2018 Aug;53:84-91. doi: 10.1016/j.ceb.2018.06.003

    Eukaryotic cells are organized into membrane-bound organelles. These organelles communicate with one another through vesicular trafficking pathways and membrane contact sites (MCSs). MCSs are sites of close apposition between two or more organelles that play diverse roles in the exchange of metabolites, lipids and proteins. Organelle interactions at MCSs also are important for organelle division and biogenesis. For example, the division of several organelles, including mitochondria and endosomes, seem to be regulated by contacts with the endoplasmic reticulum (ER). Moreover, the biogenesis of autophagosomes and peroxisomes involves contributions from the ER and multiple other cellular compartments. Thus, organelle-organelle interactions allow cells to alter the shape and activities of their membrane-bound compartments, allowing them to cope with different developmental and environmental conditions.

    View Publication Page
    08/06/18 | Inverse-response Ca2+ indicators for optogenetic visualization of neuronal inhibition.
    Zhao Y, Bushey D, Zhao Y, Schreiter ER, Harrison DJ, Wong AM, Campbell RE
    Scientific Reports. 2018 Aug 06;8(1):11758. doi: 10.1038/s41598-018-30080-x

    We have developed a series of yellow genetically encoded Ca indicators for optical imaging (Y-GECOs) with inverted responses to Ca and apparent dissociation constants (K') ranging from 25 to 2400 nM. To demonstrate the utility of this affinity series of Ca indicators, we expressed the four highest affinity variants (K's = 25, 63, 121, and 190 nM) in the Drosophila medulla intrinsic neuron Mi1. Hyperpolarization of Mi1 by optogenetic stimulation of the laminar monopolar neuron L1 produced a decrease in intracellular Ca in layers 8-10, and a corresponding increase in Y-GECO fluorescence. These experiments revealed that lower K' was associated with greater increases in fluorescence, but longer delays to reach the maximum signal change due to slower off-rate kinetics.

    View Publication Page
    08/07/18 | Knock-in rats expressing Cre and Flp recombinases at the Parvalbumin locus.
    Jai Y. Yu , Jeffrey R. Pettibone , Caiying Guo , Shuqin Zhang , Thomas L. Saunders , Elizabeth D. Hughes , Wanda E. Filipiak , Michael G. Zeidler , Kevin J. Bender , Frederic Hopf , Clay N. Smyth , Viktor Kharazia , Anna Kiseleva , Thomas J. Davidson , Loren M. Frank , Joshua D. Berke
    bioRxiv. 2018 Aug 07:. doi: 10.1101/386474

    Rats have the ability to learn and perform sophisticated behavioral tasks, making them very useful for investigating neural circuit functions. In contrast to the extensive mouse genetic toolkit, the paucity of recombinase-expressing rat models has limited the ability to monitor and manipulate molecularly-defined neural populations in this species. Here we report the generation and validation of two knock-in rat strains expressing either Cre or Flp recombinase under the control of Parvalbumin (Pvalb), a gene expressed in the critical “fast-spiking” subset of inhibitory interneurons (FSIs). These strains were generated with CRISPR-Cas9 gene editing and show highly specific and penetrant labeling of Pvalb-expressing neurons, as demonstrated by in situ hybridization and immunohistochemistry. We validated these models in both prefrontal cortex and striatum using both ex vivo and in vivo approaches, including whole-cell recording, optogenetics, extracellular physiology and photometry. Our results demonstrate the utility of these new transgenic models for a wide range of neuroscience experiments.

    View Publication Page