Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

215 Janelia Publications

Showing 41-50 of 215 results
Your Criteria:
    04/11/24 | Blue-shifted genetically encoded Ca2+ indicator with enhanced two-photon absorption
    Abhi Aggarwal , Smrithi Sunil , Imane Bendifallah , Michael Moon , Mikhail Drobizhev , Landon Zarowny , Jihong Zheng , Sheng-Yi Wu , Alexander W. Lohman , Alison G. Tebo , Valentina Emiliani , Kaspar Podgorski , Yi Shen , Robert E. Campbell
    Neurophotonics. 2024 Apr 11:. doi: 10.1117/1.NPh.11.2.024207

    Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy.

    Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1.

    Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices.

    Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300M−1cm−1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant.

    Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

    Keywords: blue-shifted fluorescence; genetically encoded calcium ion indicator; neuronal activity imaging; protein engineering; two-photon excitation.

    View Publication Page
    02/01/24 | Brain-wide neural activity underlying memory-guided movement.
    Chen S, Liu Y, Wang ZA, Colonell J, Liu LD, Hou H, Tien N, Wang T, Harris T, Druckmann S, Li N, Svoboda K
    Cell. 2024 Feb 01;187(3):676-691.e16. doi: 10.1016/j.cell.2023.12.035

    Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.

    View Publication Page
    01/11/24 | Bridging gaps in traditional research training with iBiology Courses.
    Schnoes AM, Green NH, Nguyen TA, Vale RD, Goodwin SS, Behrman SL
    PLoS Biology. 2024 Jan 11;22(1):e3002458. doi: 10.1371/journal.pbio.3002458

    iBiology Courses provide trainees with just-in-time learning resources to become effective researchers. These courses can help scientists build core research skills, plan their research projects and careers, and learn from scientists with diverse backgrounds.

    View Publication Page
    08/02/24 | Bridging tuning and invariance with equivariant neuronal representations
    Hoeller J, Zhong L, Pachitariu M, Romani S
    bioRxiv. 2024 Aug 02:. doi: 10.1101/2024.08.02.606398

    As we move through the world, we see the same visual scenes from different perspectives. Although we experience perspective deformations, our perception of a scene remains stable. This raises the question of which neuronal representations in visual brain areas are perspective-tuned and which are invariant. Focusing on planar rotations, we introduce a mathematical framework based on the principle of equivariance, which asserts that an image rotation results in a corresponding rotation of neuronal representations, to explain how the same representation can range from being fully tuned to fully invariant. We applied this framework to large-scale simultaneous neuronal recordings from four visual cortical areas in mice, where we found that representations are both tuned and invariant but become more invariant across higher-order areas. While common deep convolutional neural networks show similar trends in orientation-invariance across layers, they are not rotation-equivariant. We propose that equivariance is a prevalent computation of populations of biological neurons to gradually achieve invariance through structured tuning.

    View Publication Page
    05/15/24 | Building momentum through networks: Bioimaging across the Americas
    De Niz M, Escobedo García R, Terán Ramirez C, Pakowski Y, Abonza Y, Bialy N, Orr VL, Olivera A, Abonza V, Alleva K, Allodi S, Almeida MF, Becerril Cuevas AR, Bonnet F, Burgos Solorio A, Chew T, Chiabrando G, Cimini B, Cleret-Buhot A, Contreras Jiménez G, Daza L, De Sá V, De Val N, Delgado-Álvarez DL, Eliceiri K, Fiolka R, Grecco H, Hanein D, Hernández Herrera P, Hockberger P, Hernandez HO, Hernandez Guadarrama Y, Itano M, Jacobs CA, Jiménez-García LF, Jiménez Sabinina V, Kamaid A, Keppler A, Kumar A, Lacoste J, Lovy A, Luby-Phelps K, Mahadevan-Jansen A, Malacrida L, Mehta SB, Miller C, Miranda K, Moore JA, North A, O'Toole P, Olivares Urbano M, Pietrasanta LI, Portugal RV, Rossi AH, Sanchez Contreras J, Strambio-De-Castilla C, Soldevila G, Vale B, Vazquez D, Wood C, Brown CM, Guerrero A
    Journal of Microscopy. 2024 May 15;n/a:. doi: https://doi.org/10.1111/jmi.13318

    In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

    View Publication Page
    03/13/24 | Carbon Nanomaterial Fluorescent Probes and Their Biological Applications
    Krasley AT, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS
    Chemical Reviews. 2024 Mar 13:. doi: 10.1021/acs.chemrev.3c00581

    Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.

    View Publication Page
    03/06/24 | Cell division machinery drives cell-specific gene activation during differentiation in .
    Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS
    Proc Natl Acad Sci U S A. 2024 Mar 6;121(13):e2400584121. doi: 10.1073/pnas.2400584121

    When faced with starvation, the bacterium transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σ is exclusively activated in the smaller daughter cell. Compartment-specific activation of σ requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σ in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.

    View Publication Page
    10/21/24 | Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation
    Wolff T, Eddison M, Chen N, Nern A, Sundaramurthi P, Sitaraman D, Rubin GM
    bioRxiv. 2024 Oct 21:. doi: 10.1101/2024.10.21.619448

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    View Publication Page
    08/12/24 | Cell-surface Milieu Remodeling in Human Dendritic Cell Activation.
    Udeshi ND, Xu C, Jiang Z, Gao SM, Yin Q, Luo W, Carr SA, Davis MM, Li J
    J Immunol. 2024 Aug 12:. doi: 10.4049/jimmunol.2400089

    Dendritic cells (DCs) are specialized sentinel and APCs coordinating innate and adaptive immunity. Through proteins on their cell surface, DCs sense changes in the environment, internalize pathogens, present processed Ags, and communicate with other immune cells. By combining chemical labeling and quantitative mass spectrometry, we systematically profiled and compared the cell-surface proteomes of human primary conventional DCs (cDCs) in their resting and activated states. TLR activation by a lipopeptide globally reshaped the cell-surface proteome of cDCs, with >100 proteins upregulated or downregulated. By simultaneously elevating positive regulators and reducing inhibitory signals across multiple protein families, the remodeling creates a cell-surface milieu promoting immune responses. Still, cDCs maintain the stimulatory-to-inhibitory balance by leveraging a distinct set of inhibitory molecules. This analysis thus uncovers the molecular complexity and plasticity of the cDC cell surface and provides a roadmap for understanding cDC activation and signaling.

    View Publication Page
    07/23/24 | Chemical Induction of Longevity-Promoting Colanic Acid in the Host’s Microbiota
    Hu G, Cooke MB, Wen AX, Yu X, Wang J, Herman C, Wang MC
    bioRxiv. 2024 Jul 23:. doi: 10.1101/2024.07.23.604802

    Microbiota-derived metabolites have emerged as key regulators of longevity. The metabolic activity of the gut microbiota, influenced by dietary components and ingested chemical compounds, profoundly impacts host fitness. While the benefits of dietary prebiotics are well-known, chemically targeting the gut microbiota to enhance host fitness remains largely unexplored. Here, we report a novel chemical approach to induce a pro-longevity bacterial metabolite in the host gut. We discovered that specific Escherichia coli strains overproduce colanic acids (CAs) when exposed to a low dose of cephaloridine, leading to an increased lifespan in host Caenorhabditis elegans. In the mouse gut, oral administration of low-dose cephaloridine induces the transcription of the capsular biosynthesis operon responsible for CA biosynthesis in commensal E. coli, which overcomes the inhibition of CA biosynthesis above 30 degrees C and enables its induction directly from the microbiota. Importantly, low-dose cephaloridine induces CA independently of its antibiotic properties through a previously unknown mechanism mediated by the membrane-bound histidine kinase ZraS. Our work lays the foundation for microbiota-based therapeutics through the chemical modulation of bacterial metabolism and reveals the promising potential of bacteria-targeting drugs in promoting host longevity.

    View Publication Page