Filter
Associated Lab
- Ahrens Lab (6) Apply Ahrens Lab filter
- Aso Lab (3) Apply Aso Lab filter
- Betzig Lab (2) Apply Betzig Lab filter
- Beyene Lab (4) Apply Beyene Lab filter
- Branson Lab (4) Apply Branson Lab filter
- Card Lab (3) Apply Card Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Dudman Lab (2) Apply Dudman Lab filter
- Espinosa Medina Lab (2) Apply Espinosa Medina Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Fitzgerald Lab (2) Apply Fitzgerald Lab filter
- Funke Lab (6) Apply Funke Lab filter
- Harris Lab (4) Apply Harris Lab filter
- Hermundstad Lab (5) Apply Hermundstad Lab filter
- Hess Lab (6) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (3) Apply Jayaraman Lab filter
- Ji Lab (1) Apply Ji Lab filter
- Keller Lab (2) Apply Keller Lab filter
- Koay Lab (1) Apply Koay Lab filter
- Lavis Lab (13) Apply Lavis Lab filter
- Li Lab (2) Apply Li Lab filter
- Lippincott-Schwartz Lab (11) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (7) Apply Liu (Zhe) Lab filter
- Looger Lab (2) Apply Looger Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Otopalik Lab (1) Apply Otopalik Lab filter
- Pachitariu Lab (6) Apply Pachitariu Lab filter
- Pedram Lab (2) Apply Pedram Lab filter
- Reiser Lab (2) Apply Reiser Lab filter
- Romani Lab (4) Apply Romani Lab filter
- Rubin Lab (4) Apply Rubin Lab filter
- Saalfeld Lab (4) Apply Saalfeld Lab filter
- Satou Lab (1) Apply Satou Lab filter
- Schreiter Lab (5) Apply Schreiter Lab filter
- Shroff Lab (12) Apply Shroff Lab filter
- Singer Lab (1) Apply Singer Lab filter
- Stern Lab (9) Apply Stern Lab filter
- Stringer Lab (7) Apply Stringer Lab filter
- Tebo Lab (4) Apply Tebo Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Turaga Lab (3) Apply Turaga Lab filter
- Turner Lab (1) Apply Turner Lab filter
- Vale Lab (4) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (9) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (4) Apply Wang (Shaohe) Lab filter
Associated Project Team
- CellMap (7) Apply CellMap filter
- FIB-SEM Technology (1) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (1) Apply Fly Descending Interneuron filter
- FlyEM (4) Apply FlyEM filter
- FlyLight (5) Apply FlyLight filter
- GENIE (4) Apply GENIE filter
- Integrative Imaging (1) Apply Integrative Imaging filter
- MouseLight (1) Apply MouseLight filter
- Tool Translation Team (T3) (10) Apply Tool Translation Team (T3) filter
Associated Support Team
- Project Pipeline Support (1) Apply Project Pipeline Support filter
- Cryo-Electron Microscopy (2) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (4) Apply Electron Microscopy filter
- Integrative Imaging (4) Apply Integrative Imaging filter
- Invertebrate Shared Resource (1) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (1) Apply Janelia Experimental Technology filter
- Primary & iPS Cell Culture (1) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (15) Apply Project Technical Resources filter
- Quantitative Genomics (1) Apply Quantitative Genomics filter
- Scientific Computing Software (15) Apply Scientific Computing Software filter
Publication Date
- December 2024 (10) Apply December 2024 filter
- November 2024 (17) Apply November 2024 filter
- October 2024 (25) Apply October 2024 filter
- September 2024 (13) Apply September 2024 filter
- August 2024 (17) Apply August 2024 filter
- July 2024 (15) Apply July 2024 filter
- June 2024 (11) Apply June 2024 filter
- May 2024 (33) Apply May 2024 filter
- April 2024 (13) Apply April 2024 filter
- March 2024 (27) Apply March 2024 filter
- February 2024 (16) Apply February 2024 filter
- January 2024 (18) Apply January 2024 filter
- Remove 2024 filter 2024
215 Janelia Publications
Showing 41-50 of 215 resultsSignificance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices. Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300M−1cm−1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants. Keywords: blue-shifted fluorescence; genetically encoded calcium ion indicator; neuronal activity imaging; protein engineering; two-photon excitation.
Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
iBiology Courses provide trainees with just-in-time learning resources to become effective researchers. These courses can help scientists build core research skills, plan their research projects and careers, and learn from scientists with diverse backgrounds.
As we move through the world, we see the same visual scenes from different perspectives. Although we experience perspective deformations, our perception of a scene remains stable. This raises the question of which neuronal representations in visual brain areas are perspective-tuned and which are invariant. Focusing on planar rotations, we introduce a mathematical framework based on the principle of equivariance, which asserts that an image rotation results in a corresponding rotation of neuronal representations, to explain how the same representation can range from being fully tuned to fully invariant. We applied this framework to large-scale simultaneous neuronal recordings from four visual cortical areas in mice, where we found that representations are both tuned and invariant but become more invariant across higher-order areas. While common deep convolutional neural networks show similar trends in orientation-invariance across layers, they are not rotation-equivariant. We propose that equivariance is a prevalent computation of populations of biological neurons to gradually achieve invariance through structured tuning.
In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
When faced with starvation, the bacterium transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σ is exclusively activated in the smaller daughter cell. Compartment-specific activation of σ requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σ in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.
Dendritic cells (DCs) are specialized sentinel and APCs coordinating innate and adaptive immunity. Through proteins on their cell surface, DCs sense changes in the environment, internalize pathogens, present processed Ags, and communicate with other immune cells. By combining chemical labeling and quantitative mass spectrometry, we systematically profiled and compared the cell-surface proteomes of human primary conventional DCs (cDCs) in their resting and activated states. TLR activation by a lipopeptide globally reshaped the cell-surface proteome of cDCs, with >100 proteins upregulated or downregulated. By simultaneously elevating positive regulators and reducing inhibitory signals across multiple protein families, the remodeling creates a cell-surface milieu promoting immune responses. Still, cDCs maintain the stimulatory-to-inhibitory balance by leveraging a distinct set of inhibitory molecules. This analysis thus uncovers the molecular complexity and plasticity of the cDC cell surface and provides a roadmap for understanding cDC activation and signaling.
Microbiota-derived metabolites have emerged as key regulators of longevity. The metabolic activity of the gut microbiota, influenced by dietary components and ingested chemical compounds, profoundly impacts host fitness. While the benefits of dietary prebiotics are well-known, chemically targeting the gut microbiota to enhance host fitness remains largely unexplored. Here, we report a novel chemical approach to induce a pro-longevity bacterial metabolite in the host gut. We discovered that specific Escherichia coli strains overproduce colanic acids (CAs) when exposed to a low dose of cephaloridine, leading to an increased lifespan in host Caenorhabditis elegans. In the mouse gut, oral administration of low-dose cephaloridine induces the transcription of the capsular biosynthesis operon responsible for CA biosynthesis in commensal E. coli, which overcomes the inhibition of CA biosynthesis above 30 degrees C and enables its induction directly from the microbiota. Importantly, low-dose cephaloridine induces CA independently of its antibiotic properties through a previously unknown mechanism mediated by the membrane-bound histidine kinase ZraS. Our work lays the foundation for microbiota-based therapeutics through the chemical modulation of bacterial metabolism and reveals the promising potential of bacteria-targeting drugs in promoting host longevity.