Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

132 Janelia Publications

Showing 91-100 of 132 results
Your Criteria:
    03/15/24 | NeuronBridge: an intuitive web application for neuronal morphology search across large data sets
    Jody Clements , Cristian Goina , Philip M. Hubbard , Takashi Kawase , Donald J. Olbris , Hideo Otsuna , Robert Svirskas , Konrad Rokicki
    BMC Bioinformatics. 2024 Mar 15;25:114. doi: 10.1186/s12859-024-05732-7

    Background

    Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. To exploit this knowledge base, researchers relate a connectome’s structure to neuronal function, often by studying individual neuron cell types. Vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM), enabling the targeting of neurons for experimentation. However, creating a fly line for driving gene expression within a single neuron found in an EM connectome remains a challenge, as it typically requires identifying a pair of driver lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities.

    Results

    Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large data sets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly graphical user interface (GUI), extensible data model, serverless cloud architecture, and massively parallel image search engine.

    Conclusions

    NeuronBridge fills a critical gap in the Drosophila research workflow and is used by hundreds of neuroscience researchers around the world. We offer our software code, open APIs, and processed data sets for integration and reuse, and provide the application as a service at http://neuronbridge.janelia.org.

    View Publication Page
    05/09/24 | Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster
    Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AK, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu S, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GS, Funke J
    Cell. 2024 May 09;187(10):2574-2594.e23. doi: 10.1016/j.cell.2024.03.016

    High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.

    View Publication Page
    01/25/24 | New genetic tools for mushroom body output neurons in Drosophila
    Rubin GM, Aso Y
    eLife. 2024 Jan 24:. doi: 10.7554/eLife.90523

    How memories of past events influence behavior is a key question in neuroscience. The major associative learning center in Drosophila, the Mushroom Body (MB), communicates to the rest of the brain through Mushroom Body Output Neurons (MBONs). While 21 MBON cell types have their dendrites confined to small compartments of the MB lobes, analysis of EM connectomes revealed the presence of an additional 14 MBON cell types that are atypical in having dendritic input both within the MB lobes and in adjacent brain regions. Genetic reagents for manipulating atypical MBONs and experimental data on their functions has been lacking. In this report we describe new cell-type-specific GAL4 drivers for many MBONs, including the majority of atypical MBONs. Using these genetic reagents, we conducted optogenetic activation screening to examine their ability to drive behaviors and learning. These reagents provide important new tools for the study of complex behaviors in Drosophila.

    View Publication Page
    04/06/24 | NMDAR-mediated activation of pannexin1 channels contributes to the detonator properties of hippocampal mossy fiber synapses.
    Rangel-Sandoval C, Soula M, Li W, Castillo PE, Hunt DL
    iScience. 2024 Apr 06;27(5):109681. doi: 10.1016/j.isci.2024.109681

    Pannexins are large-pore ion channels expressed throughout the mammalian brain that participate in various neuropathologies; however, their physiological roles remain obscure. Here, we report that pannexin1 channels (Panx1) can be synaptically activated under physiological recording conditions in rodent acute hippocampal slices. Specifically, NMDA receptor (NMDAR)-mediated responses at the mossy fiber to CA3 pyramidal cell synapse were followed by a slow postsynaptic inward current that could activate CA3 pyramidal cells but was absent in Panx1 knockout mice. Immunoelectron microscopy revealed that Panx1 was localized near the postsynaptic density. Further, Panx1-mediated currents were potentiated by metabotropic receptors and bidirectionally modulated by burst-timing-dependent plasticity of NMDAR-mediated transmission. Lastly, Panx1 channels were preferentially recruited when NMDAR activation enters a supralinear regime, resulting in temporally delayed burst-firing. Thus, Panx1 can contribute to synaptic amplification and broadening the temporal associativity window for co-activated pyramidal cells, thereby supporting the auto-associative functions of the CA3 region.

    View Publication Page
    05/23/24 | Norepinephrine changes behavioral state via astroglial purinergic signaling
    Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB
    bioRxiv. 2024 May 23:. doi: 10.1101/2024.05.23.595576

    Both neurons and glia communicate via diffusible neuromodulatory substances, but the substrates of computation in such neuromodulatory networks are unclear. During behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine drives fast excitation and delayed inhibition of behavior and circuit activity. We find that the inhibitory arm of this feedforward motif is implemented by astroglial purinergic signaling. Neuromodulator imaging, behavioral pharmacology, and perturbations of neurons and astroglia reveal that norepinephrine triggers astroglial release of adenosine triphosphate, extracellular conversion into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. This work, along with a companion piece by Lefton and colleagues demonstrating an analogous pathway mediating the effect of norepinephrine on synaptic connectivity in mice, identifies a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in norepinephrine-mediated behavioral and brain state transitions.

    View Publication Page
    04/25/24 | Optimization in Visual Motion Estimation.
    Clark DA, Fitzgerald JE
    Annu Rev Vis Sci. 2024 Apr 25:. doi: 10.1146/annurev-vision-101623-025432

    Sighted animals use visual signals to discern directional motion in their environment. Motion is not directly detected by visual neurons, and it must instead be computed from light signals that vary over space and time. This makes visual motion estimation a near universal neural computation, and decades of research have revealed much about the algorithms and mechanisms that generate directional signals. The idea that sensory systems are optimized for performance in natural environments has deeply impacted this research. In this article, we review the many ways that optimization has been used to quantitatively model visual motion estimation and reveal its underlying principles. We emphasize that no single optimization theory has dominated the literature. Instead, researchers have adeptly incorporated different computational demands and biological constraints that are pertinent to the specific brain system and animal model under study. The successes and failures of the resulting optimization models have thereby provided insights into how computational demands and biological constraints together shape neural computation.

    View Publication Page
    01/19/24 | Organelle proteomic profiling reveals lysosomal heterogeneity in association with longevity
    Yong Yu , Shihong M. Gao , Youchen Guan , Pei-Wen Hu , Qinghao Zhang , Jiaming Liu , Bentian Jing , Qian Zhao , David M Sabatini , Monther Abu-Remaileh , Sung Yun Jung , Meng C. Wang
    eLife. 2024 Jan 19:. doi: 10.7554/eLife.85214

    Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins enriched at lysosomes mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked with longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using large-scale proteomic profiling, we systemically profiled lysosome- enriched proteomes in association with different longevity mechanisms. We further discovered the lysosomal recruitment of AMPK and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we discovered lysosomal heterogeneity across tissues as well as the specific enrichment of the Ragulator complex on Cystinosin positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity at different levels and provides resources for understanding the contribution of lysosomal proteome dynamics in modulating signal transduction, organelle crosstalk and organism longevity.

    View Publication Page
    Card Lab
    02/13/24 | Organization of an ascending circuit that conveys flight motor state in Drosophila.
    Cheong HS, Boone KN, Bennett MM, Salman F, Ralston JD, Hatch K, Allen RF, Phelps AM, Cook AP, Phelps JS, Erginkaya M, Lee WA, Card GM, Daly KC, Dacks AM
    Current Biology. 2024 Feb 13:. doi: 10.1016/j.cub.2024.01.071

    Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.

    View Publication Page
    04/01/24 | Patch-walking: Coordinated multi-pipette patch clamp for efficiently finding synaptic connections
    Mighten C. Yip , Mercedes M. Gonzalez , Colby F. Lewallen , Corey R. Landry , Ilya Kolb , Bo Yang , William M. Stoy , Ming-fai Fong , Matthew JM Rowan , Edward S. Boyden , Craig R. Forest
    bioRxiv. 2024 Apr 1:. doi: 10.1101/2024.03.30.587445

    Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can “walk” across the tissue, termed “patch-walking.” We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e., 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding 3 connections. Patch-walking yields 80-92% more probed connections, for experiments with 10-100 cells than the traditional synaptic connection searching method.

    View Publication Page
    05/31/24 | Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites
    Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
    bioRxiv. 2024 May 31:. doi: 10.1101/2024.05.27.596121

    Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at \~1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca2+ channels and ER Ca2+-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca2+ homeostasis, and local activation of the Ca2+/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca2+ modulatory machinery facilitating voltage-independent signal transmission and ryanodine receptor-dependent Ca2+ release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca2+ release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.HighlightsPeriodic ER-PM junctions tile neuronal dendritic plasma membrane in rodent and fly.ER-PM junctions are populated by ER tethering and Ca2+ release and influx machinery.ER-PM junctions act as sites for local activation of CaMKII.Local spine activation drives Ca2+ release from RyRs at ER-PM junctions over 20 μm.

    View Publication Page