Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

57 Janelia Publications

Showing 31-40 of 57 results
Your Criteria:
    11/03/16 | Illuminating the neuronal architecture underlying context in fear memory.
    Cembrowski MS, Spruston N
    Cell. 2016 Nov 3;167(4):888-9

    Context plays a foundational role in determining how to interpret potentially fear-producing stimuli, yet the precise neurobiological substrates of context are poorly understood. In this issue of Cell, Xu et al. elegantly show that parallel neuronal circuits are necessary for two distinct roles of context in fear conditioning.

    View Publication Page
    Magee LabSpruston Lab
    09/23/15 | Inhibitory gating of input comparison in the CA1 microcircuit.
    Milstein AD, Bloss EB, Apostolides PF, Vaidya SP, Dilly GA, Zemelman BV, Magee JC
    Neuron. 2015 Sep 23;87(6):1274-89. doi: 10.1016/j.neuron.2015.08.025

    Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter. However, during ECIII and CA3 input comparison, supralinear dendritic integration is dynamically balanced by feedforward and feedback inhibition, resulting in suppression of dendritic complex spiking. We find that a particular subpopulation of CA1 interneurons expressing neuropeptide Y (NPY) contributes prominently to this dynamic filter by integrating both ECIII and CA3 input pathways and potently inhibiting CA1 pyramidal neuron dendrites.

    View Publication Page
    05/17/17 | Integrating Results across Methodologies Is Essential for Producing Robust Neuronal Taxonomies.
    Cembrowski MS, Spruston N
    Neuron. 2017 May 17;94(4):747-751.e1. doi: 10.1016/j.neuron.2017.04.023

    Elucidating the diversity and spatial organization of cell types in the brain is an essential goal of neuroscience, with many emerging technologies helping to advance this endeavor. Using a new in situ hybridization method that can measure the expression of hundreds of genes in a given mouse brain section (amplified seqFISH), Shah et al. (2016) describe a spatial organization of hippocampal cell types that differs from previous reports. In seeking to understand this discrepancy, we find that many of the barcoded genes used by seqFISH to characterize this spatial organization, when cross-validated by other sensitive methodologies, exhibit negligible expression in the hippocampus. Additionally, the results of Shah et al. (2016) do not recapitulate canonical cellular hierarchies and improperly classify major neuronal cell types. We suggest that, when describing the spatial organization of brain regions, cross-validation using multiple techniques should be used to yield robust and informative cellular classification. This Matters Arising paper is in response to Shah et al. (2016), published in Neuron. See also the response by Shah et al. (2017), published in this issue.

    View Publication Page
    02/12/25 | Learning produces an orthogonalized state machine in the hippocampus.
    Sun W, Winnubst J, Natrajan M, Lai C, Kajikawa K, Michaelos M, Gattoni R, Stringer C, Flickinger D, Fitzgerald JE, Spruston N
    Nature. 2025 February 12;640:. doi: 10.1038/s41586-024-08548-w

    Cognitive maps confer animals with flexible intelligence by representing spatial, temporal and abstract relationships that can be used to shape thought, planning and behaviour. Cognitive maps have been observed in the hippocampus1, but their algorithmic form and learning mechanisms remain obscure. Here we used large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different linear tracks in virtual reality. Throughout learning, both animal behaviour and hippocampal neural activity progressed through multiple stages, gradually revealing improved task representation that mirrored improved behavioural efficiency. The learning process involved progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent structure of the task. This decorrelation process was driven by individual neurons acquiring task-state-specific responses (that is, 'state cells'). Although various standard artificial neural networks did not naturally capture these dynamics, the clone-structured causal graph, a hidden Markov model variant, uniquely reproduced both the final orthogonalized states and the learning trajectory seen in animals. The observed cellular and population dynamics constrain the mechanisms underlying cognitive map formation in the hippocampus, pointing to hidden state inference as a fundamental computational principle, with implications for both biological and artificial intelligence.

    View Publication Page
    12/01/20 | Linking axon morphology to gene expression: a strategy for neuronal cell-type classification.
    Winnubst J, Spruston N, Harris JA
    Current Opinion in Neurobiology. 2020 Dec 01;65:70-76. doi: 10.1016/j.conb.2020.10.006

    To study how the brain drives cognition and behavior we need to understand its cellular composition. Advances in single-cell transcriptomics have revolutionized our ability to characterize neuronal diversity. To arrive at meaningful descriptions of cell types, however, gene expression must be linked to structural and functional properties. Axonal projection patterns are an appropriate measure, as they are diverse, change only gradually over time, and they influence and constrain circuit function. Here, we consider how efforts to map transcriptional and morphological diversity in the mouse brain could be linked to generate a modern taxonomy of the mouse brain.

    View Publication Page
    12/01/20 | Linking axon morphology to gene expression: a strategy for neuronal cell-type classification.
    Winnubst J, Spruston N, Harris JA
    Current Opinion in Neurobiology. 2020 Dec 01;65:70-76. doi: 10.1016/j.conb.2020.10.006

    To study how the brain drives cognition and behavior we need to understand its cellular composition. Advances in single-cell transcriptomics have revolutionized our ability to characterize neuronal diversity. To arrive at meaningful descriptions of cell types, however, gene expression must be linked to structural and functional properties. Axonal projection patterns are an appropriate measure, as they are diverse, change only gradually over time, and they influence and constrain circuit function. Here, we consider how efforts to map transcriptional and morphological diversity in the mouse brain could be linked to generate a modern taxonomy of the mouse brain.

    View Publication Page
    04/12/19 | Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain.
    Sugino K, Clark E, Schulmann A, Shima Y, Wang L, Hunt DL, Hooks BM, Traenkner D, Chandrashekar J, Picard S, Lemire AL, Spruston N, Hantman AW, Nelson SB
    Elife. 2019 Apr 12;8:. doi: 10.7554/eLife.38619

    Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases we provide an extensive resource for further investigation of mouse neuronal cell types.

    View Publication Page
    10/01/13 | Mechanisms of retroaxonal barrage firing in hippocampal interneurons.
    Sheffield ME, Edgerton GB, Heuermann RJ, Deemyad T, Mensh BD, Spruston N
    The Journal of Physiology. 2013 Oct 1;591(Pt 19):4793-805. doi: 10.1113/jphysiol.2013.258418

    Abstract We recently described a new form of neural integration and firing in a subset of interneurons, in which evoking hundreds of action potentials over tens of seconds to minutes produces a sudden barrage of action potentials lasting about a minute beyond the inciting stimulation. During this persistent firing, action potentials are generated in the distal axon and propagate retrogradely to the soma. To distinguish this from other forms of persistent firing, we refer to it here as ’retroaxonal barrage firing’, or ’barrage firing’ for short. Its induction is blocked by chemical inhibitors of gap junctions and curiously, stimulation of one interneuron in some cases triggers barrage firing in a nearby, unstimulated interneuron. Beyond these clues, the mechanisms of barrage firing are unknown. Here we report new results related to these mechanisms. Induction of barrage firing was blocked by lowering extracellular calcium, as long as normal action potential threshold was maintained, and it was inhibited by blocking L-type voltage-gated calcium channels. Despite its calcium dependence, barrage firing was not prevented by inhibiting chemical synaptic transmission. Furthermore, loading the stimulated/recorded interneuron with BAPTA did not block barrage firing, suggesting that the required calcium entry occurs in other cells. Finally, barrage firing was normal in mice with deletion of the primary gene for neuronal gap junctions (connexin36), suggesting that non-neuronal gap junctions may be involved. Together, these findings suggest that barrage firing is probably triggered by a multicellular mechanism involving calcium signalling and gap junctions, but operating independently of chemical synaptic transmission.

    View Publication Page
    07/01/20 | Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus.
    Zhao X, Wang Y, Spruston N, Magee JC
    Nature Neuroscience. 2020 Jul 1;23(7):881-91. doi: 10.1038/s41593-020-0646-2

    As animals navigate, they must identify features within context. In the mammalian brain, the hippocampus has the ability to separately encode different environmental contexts, even when they share some prominent features. To do so, neurons respond to sensory features in a context-dependent manner; however, it is not known how this encoding emerges. To examine this, we performed electrical recordings in the hippocampus as mice navigated in two distinct virtual environments. In CA1, both synaptic input to single neurons and population activity strongly tracked visual cues in one environment, whereas responses were almost completely absent when the same cue was presented in a second environment. A very similar, highly context-dependent pattern of cue-driven spiking was also observed in CA3. These results indicate that CA1 inherits a complex spatial code from upstream regions, including CA3, that have already computed a context-dependent representation of environmental features.

    View Publication Page
    05/02/23 | Meta-learning in head fixed mice navigating in virtual reality: A Behavioral Analysis
    Xinyu Zhao , Rachel Gattoni , Andrea Kozlosky , Angela Jacobs , Colin Morrow , Sarah Lindo , Nelson Spruston
    bioRxiv. 2023 May 02:. doi: 10.1101/2023.05.01.538936

    Animals can learn general task structures and use them to solve new problems with novel sensory specifics. This capacity of ‘learning to learn’, or meta-learning, is difficult to achieve in artificial systems, and the mechanisms by which it is achieved in animals are unknown. As a step toward enabling mechanistic studies, we developed a behavioral paradigm that demonstrates meta-learning in head-fixed mice. We trained mice to perform a two-alternative forced-choice task in virtual reality (VR), and successively changed the visual cues that signaled reward location. Mice showed increased learning speed in both cue generalization and serial reversal tasks. During reversal learning, behavior exhibited sharp transitions, with the transition occurring earlier in each successive reversal. Analysis of motor patterns revealed that animals utilized similar motor programs to execute the same actions in response to different cues but modified the motor programs during reversal learning. Our study demonstrates that mice can perform meta-learning tasks in VR, thus opening up opportunities for future mechanistic studies.

    View Publication Page