Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

92 Janelia Publications

Showing 21-30 of 92 results
Your Criteria:
    09/05/22 | Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations.
    Malin-Mayor C, Hirsch P, Guignard L, McDole K, Wan Y, Lemon WC, Kainmueller D, Keller PJ, Preibisch S, Funke J
    Nature Biotechnology. 2022 Sep 05:. doi: 10.1038/s41587-022-01427-7

    We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs.

    View Publication Page
    09/05/14 | Automatic neuron type identification by neurite localization in the Drosophila medulla.
    Plaza SM, Zhao T
    arXiv. 2014 Sep 5:arXiv:1409.1892 [q-bio.NC]

    Mapping the connectivity of neurons in the brain (i.e., connectomics) is a challenging problem due to both the number of connections in even the smallest organisms and the nanometer resolution required to resolve them. Because of this, previous connectomes contain only hundreds of neurons, such as in the C.elegans connectome. Recent technological advances will unlock the mysteries of increasingly large connectomes (or partial connectomes). However, the value of these maps is limited by our ability to reason with this data and understand any underlying motifs. To aid connectome analysis, we introduce algorithms to cluster similarly-shaped neurons, where 3D neuronal shapes are represented as skeletons. In particular, we propose a novel location-sensitive clustering algorithm. We show clustering results on neurons reconstructed from the Drosophila medulla that show high-accuracy.

    View Publication Page
    02/17/20 | Behavioral features of motivated response to alcohol in Drosophila.
    Catalano JL, Mei N, Azanchi R, Song S, Blackwater T, Heberlein U, Kaun KR
    bioRxiv. 2020 Feb 17:

    Animals avoid predators and find the best food and mates by learning from the consequences of their behavior. However, reinforcers are not always uniquely appetitive or aversive but can have complex properties. Most intoxicating substances fall within this category; provoking aversive sensory and physiological reactions while simultaneously inducing overwhelming appetitive properties. Here we describe the subtle behavioral features associated with continued seeking for alcohol despite aversive consequences. We developed an automated runway apparatus to measure how Drosophila respond to consecutive exposures of a volatilized substance. Behavior within this Behavioral Expression of Ethanol Reinforcement Runway (BEER Run) demonstrated a defined shift from aversive to appetitive responses to volatilized ethanol. Behavioral metrics attained by combining computer vision and machine learning methods, reveal that a subset of 9 classified behaviors and component behavioral features associate with this shift. We propose this combination of 9 be

    View Publication Page
    05/26/22 | Best practice standards for circular RNA research
    Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, Kadener S, Kristensen LS, Legnini I, Morlando M, Jarlstad Olesen MT, Pasterkamp RJ, Preibisch S, Rajewsky N, Suenkel C, Kjems J
    Nature Methods. 05/2022;19(10):1208 - 1220. doi: 10.1038/s41592-022-01487-2

    Circular RNAs (circRNAs) are formed in all domains of life and via different mechanisms. There has been an explosion in the number of circRNA papers in recent years; however, as a relatively young field, circRNA biology has an urgent need for common experimental standards for isolating, analyzing, expressing and depleting circRNAs. Here we propose a set of guidelines for circRNA studies based on the authors’ experience. This Perspective will specifically address the major class of circRNAs in Eukarya that are generated by a spliceosome-catalyzed back-splicing event. We hope that the implementation of best practice principles for circRNA research will help move the field forward and allow a better functional understanding of this fascinating group of RNAs.

    View Publication Page
    05/01/25 | Cellpose-SAM: superhuman generalization for cellular segmentation
    Pachitariu M, Rariden M, Stringer C
    bioRxiv. 2025 May 1:. doi: 10.1101/2025.04.28.651001

    Modern algorithms for biological segmentation can match inter-human agreement in annotation quality. This however is not a performance bound: a hypothetical human-consensus segmentation could reduce error rates in half. To obtain a model that generalizes better we adapted the pretrained transformer backbone of a foundation model (SAM) to the Cellpose framework. The resulting Cellpose-SAM model substantially outperforms inter-human agreement and approaches the human-consensus bound. We increase generalization performance further by making the model robust to channel shuffling, cell size, shot noise, downsampling, isotropic and anisotropic blur. The new model can be readily adopted into the Cellpose ecosystem which includes finetuning, human-in-the-loop training, image restoration and 3D segmentation approaches. These properties establish Cellpose-SAM as a foundation model for biological segmentation.

    View Publication Page
    07/24/24 | Cohesin prevents cross-domain gene coactivation.
    Dong P, Zhang S, Gandin V, Xie L, Wang L, Lemire AL, Li W, Otsuna H, Kawase T, Lander AD, Chang HY, Liu ZJ
    Nat Genet. 2024 Jul 24:. doi: 10.1038/s41588-024-01852-1

    The contrast between the disruption of genome topology after cohesin loss and the lack of downstream gene expression changes instigates intense debates regarding the structure-function relationship between genome and gene regulation. Here, by analyzing transcriptome and chromatin accessibility at the single-cell level, we discover that, instead of dictating population-wide gene expression levels, cohesin supplies a general function to neutralize stochastic coexpression tendencies of cis-linked genes in single cells. Notably, cohesin loss induces widespread gene coactivation and chromatin co-opening tens of million bases apart in cis. Spatial genome and protein imaging reveals that cohesin prevents gene co-bursting along the chromosome and blocks spatial mixing of transcriptional hubs. Single-molecule imaging shows that cohesin confines the exploration of diverse enhancer and core promoter binding transcriptional regulators. Together, these results support that cohesin arranges nuclear topology to control gene coexpression in single cells.

    View Publication Page
    05/09/18 | Color depth MIP mask search: a new tool to expedite Split-GAL4 creation.
    Otsuna H, Ito M, Kawase T
    bioRxiv. 2018 May 09:. doi: 10.1101/318006

    The GAL4-UAS system has proven its versatility in studying the function and expression patterns of neurons the Drosophila central nervous system. Although the GAL4 system has been used for 25 years, recent genetic intersectional tools have enabled genetic targeting of very small numbers of neurons aiding in the understanding of their function. This split-GAL4 system is extremely powerful for studying neuronal morphology and the neural basis of animal behavior. However, choosing lines to intersect that have overlapping patterns restricted to one to a few neurons has been cumbersome. This challenge is now growing as the collections of GAL4 driver lines has increased. Here we present a new method and software plug-in for Fiji to dramatically improve the speed of querying large databases of potential lines to intersect and aid in the split-GAL4 creation. We also provide pre-computed datasets for the Janelia GAL4 (5,738 lines) and VT GAL4 (7,429 lines) of the Drosophila central nervous system (CNS). The tool reduced our split-GAL4 creation effort dramatically.

    View Publication Page
    01/09/19 | Comparisons between the ON- and OFF-edge motion pathways in the brain.
    Shinomiya K, Huang G, Lu Z, Parag T, Xu CS, Aniceto R, Ansari N, Cheatham N, Lauchie S, Neace E, Ogundeyi O, Ordish C, Peel D, Shinomiya A, Smith C, Takemura S, Talebi I, Rivlin PK, Nern A, Scheffer LK, Plaza SM, Meinertzhagen IA
    eLife. 2019 Jan 09;8:. doi: 10.7554/eLife.40025

    Understanding the circuit mechanisms behind motion detection is a long-standing question in visual neuroscience. In , recent synapse-level connectomes in the optic lobe, particularly in ON-pathway (T4) receptive-field circuits, in concert with physiological studies, suggest an increasingly intricate motion model compared with the ubiquitous Hassenstein-Reichardt model, while our knowledge of OFF-pathway (T5) has been incomplete. Here we present a conclusive and comprehensive connectome that for the first time integrates detailed connectivity information for inputs to both T4 and T5 pathways in a single EM dataset covering the entire optic lobe. With novel reconstruction methods using automated synapse prediction suited to such a large connectome, we successfully corroborate previous findings in the T4 pathway and comprehensively identify inputs and receptive fields for T5. While the two pathways are likely evolutionarily linked and indeed exhibit many similarities, we uncover interesting differences and interactions that may underlie their distinct functional properties.

    View Publication Page
    Zlatic LabCardona LabFetter LabTruman LabScientific Computing Software
    10/05/16 | Competitive disinhibition mediates behavioral choice and sequences in Drosophila.
    Jovanic T, Schneider-Mizell CM, Shao M, Masson J, Denisov G, Fetter RD, Mensh BD, Truman JW, Cardona A, Zlatic M
    Cell. 2016 Oct 5;167(3):858-70. doi: 10.1016/j.cell.2016.09.009

    Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus. Together, these studies reveal that, early in sensory processing, (1) reciprocally connected feedforward inhibitory interneurons implement behavioral choice, (2) local feedback disinhibition provides positive feedback that consolidates and maintains the chosen behavior, and (3) lateral disinhibition promotes sequence transitions. The combination of these interconnected circuit motifs can implement both behavior selection and the serial organization of behaviors into a sequence.

    View Publication Page
    03/26/25 | Connectome-driven neural inventory of a complete visual system
    Aljoscha Nern , Frank Loesche , Shin-ya Takemura , Laura E Burnett , Marisa Dreher , Eyal Gruntman , Judith Hoeller , Gary B Huang , Michal Januszewski , Nathan C Klapoetke , Sanna Koskela , Kit D Longden , Zhiyuan Lu , Stephan Preibisch , Wei Qiu , Edward M Rogers , Pavithraa Seenivasan , Arthur Zhao , John Bogovic , Brandon S Canino , Jody Clements , Michael Cook , Samantha Finley-May , Miriam A Flynn , Imran Hameed , Kenneth J Hayworth , Gary Patrick Hopkins , Philip M Hubbard , William T Katz , Julie Kovalyak , Shirley A Lauchie , Meghan Leonard , Alanna Lohff , Charli A Maldonado , Caroline Mooney , Nneoma Okeoma , Donald J Olbris , Christopher Ordish , Tyler Paterson , Emily M Phillips , Tobias Pietzsch , Jennifer Rivas Salinas , Patricia K Rivlin , Ashley L Scott , Louis A Scuderi , Satoko Takemura , Iris Talebi , Alexander Thomson , Eric T Trautman , Lowell Umayam , Claire Walsh , John J Walsh , C Shan Xu , Emily A Yakal , Tansy Yang , Ting Zhao , Jan Funke , Reed George , Harald F Hess , Gregory S X E Jefferis , Christopher Knecht , Wyatt Korff , Stephen M Plaza , Sandro Romani , Stephan Saalfeld , Louis K Scheffer , Stuart Berg , Gerald M Rubin , Michael B Reiser
    Nature. 2025 Mar 26:. doi: 10.1038/s41586-025-08746-0

    Vision provides animals with detailed information about their surroundings, conveying diverse features such as color, form, and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons, such that in animals as distant as flies and humans, visual regions comprise half the brain’s volume. These visual brain regions often reveal remarkable structure-function relationships, with neurons organized along spatial maps with shapes that directly relate to their roles in visual processing. To unravel the stunning diversity of a complex visual system, a careful mapping of the neural architecture matched to tools for targeted exploration of that circuitry is essential. Here, we report a new connectome of the right optic lobe from a male Drosophila central nervous system FIB-SEM volume and a comprehensive inventory of the fly’s visual neurons. We developed a computational framework to quantify the anatomy of visual neurons, establishing a basis for interpreting how their shapes relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity, and expert curation, we classified the 53,000 neurons into 727 types, about half of which are systematically described and named for the first time. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron type catalog. Together, this comprehensive set of tools and data unlock new possibilities for systematic investigations of vision in Drosophila, a foundation for a deeper understanding of sensory processing.

     

    View Publication Page