Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    04/01/16 | Large-scale electron microscopy image segmentation in spark.
    Plaza SM, Berg SE
    arXiv. 1 April 2016:arXiv:1604.00385

    The emerging field of connectomics aims to unlock the mysteries of the brain by understanding the connectivity between neurons. To map this connectivity, we acquire thousands of electron microscopy (EM) images with nanometer-scale resolution. After aligning these images, the resulting dataset has the potential to reveal the shapes of neurons and the synaptic connections between them. However, imaging the brain of even a tiny organism like the fruit fly yields terabytes of data. It can take years of manual effort to examine such image volumes and trace their neuronal connections. One solution is to apply image segmentation algorithms to help automate the tracing tasks. In this paper, we propose a novel strategy to apply such segmentation on very large datasets that exceed the capacity of a single machine. Our solution is robust to potential segmentation errors which could otherwise severely compromise the quality of the overall segmentation, for example those due to poor classifier generalizability or anomalies in the image dataset. We implement our algorithms in a Spark application which minimizes disk I/O, and apply them to a few large EM datasets, revealing both their effectiveness and scalability. We hope this work will encourage external contributions to EM segmentation by providing 1) a flexible plugin architecture that deploys easily on different cluster environments and 2) an in-memory representation of segmentation that could be conducive to new advances.

    View Publication Page
    Freeman Lab
    04/01/16 | MLlib: Machine learning in Apache Spark.
    Meng X, Bradley J, Yavus B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai DB, Amde M, Owen S, Xin D, Franklin MJ, Zadeh R, Zaharia M, Talwalkar A
    Journal of Machine Learning Research. 2016 Apr 01;17:1-7

    Apache Spark is a popular open-source platform for large-scale data processing that is well-suited for iterative machine learning tasks. In this paper we present MLlib, Spark’s open-source distributed machine learning library. MLlib provides efficient functionality for a wide range of learning settings and includes several underlying statistical, optimization, and linear algebra primitives. Shipped with Spark, MLlib supports several languages and provides a high-level API that leverages Spark’s rich ecosystem to simplify the development of end-to-end machine learning pipelines. MLlib has experienced a rapid growth due to its vibrant open-source community of over 140 contributors, and includes extensive documentation to support further growth and to let users quickly get up to speed. 

    View Publication Page
    04/01/16 | The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue.
    Wan Y, Almeida AD, Rulands S, Chalour N, Muresan L, Wu Y, Simons BD, He J, Harris WA
    Development (Cambridge, England). 2016 Apr 01;143(7):1099-107. doi: 10.1242/dev.133314

    Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime.

    View Publication Page