Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

191 Janelia Publications

Showing 61-70 of 191 results
Your Criteria:
    11/14/16 | Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells.
    Hayer A, Shao L, Chung M, Joubert L, Yang HW, Tsai F, Bisaria A, Betzig E, Meyer T
    Nature Cell Biology. 2016 Nov 14;18(12):1311-23. doi: 10.1038/ncb3438

    The development and maintenance of tissues requires collective cell movement, during which neighbouring cells coordinate the polarity of their migration machineries. Here, we ask how polarity signals are transmitted from one cell to another across symmetrical cadherin junctions, during collective migration. We demonstrate that collectively migrating endothelial cells have polarized VE-cadherin-rich membrane protrusions, ‘cadherin fingers’, which leading cells extend from their rear and follower cells engulf at their front, thereby generating opposite membrane curvatures and asymmetric recruitment of curvature-sensing proteins. In follower cells, engulfment of cadherin fingers occurs along with the formation of a lamellipodia-like zone with low actomyosin contractility, and requires VE-cadherin/catenin complexes and Arp2/3-driven actin polymerization. Lateral accumulation of cadherin fingers in follower cells precedes turning, and increased actomyosin contractility can initiate cadherin finger extension as well as engulfment by a neighbouring cell, to promote follower behaviour. We propose that cadherin fingers serve as guidance cues that direct collective cell migration.

    View Publication Page
    Grigorieff Lab
    05/09/16 | Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome.
    Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA
    eLife. 2016 May 9;5:. doi: 10.7554/eLife.14874

    Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.

    View Publication Page
    Eddy/Rivas Lab
    03/07/16 | Epigenomic landscapes of retinal rods and cones.
    Mo A, Luo C, Davis FP, Mukamel EA, Henry GL, Nery JR, Urich MA, Picard S, Lister R, Eddy SR, Beer MA, Ecker JR, Nathans J
    eLife. 2016 Mar 07;5:. doi: 10.7554/eLife.11613

    Rod and cone photoreceptors are highly similar in many respects but they have important functional and molecular differences. Here, we investigate genome-wide patterns of DNA methylation and chromatin accessibility in mouse rods and cones and correlate differences in these features with gene expression, histone marks, transcription factor binding, and DNA sequence motifs. Loss of NR2E3 in rods shifts their epigenomes to a more cone-like state. The data further reveal wide differences in DNA methylation between retinal photoreceptors and brain neurons. Surprisingly, we also find a substantial fraction of DNA hypo-methylated regions in adult rods that are not in active chromatin. Many of these regions exhibit hallmarks of regulatory regions that were active earlier in neuronal development, suggesting that these regions could remain undermethylated due to the highly compact chromatin in mature rods. This work defines the epigenomic landscapes of rods and cones, revealing features relevant to photoreceptor development and function.

    View Publication Page
    07/11/16 | Evaluation of the Ser-His dipeptide, a putative catalyst of amide and ester hydrolysis.
    MacDonald MJ, Lavis LD, Hilvert D, Gellman SH
    Organic Letters. 2016 Jul 11:. doi: 10.1021/acs.orglett.6b01279

    Efficient hydrolysis of amide bonds has long been a reaction of interest for organic chemists. The rate constants of proteases are unmatched by those of any synthetic catalyst. It has been proposed that a dipeptide containing serine and histidine is an effective catalyst of amide hydrolysis, based on an apparent ability to degrade a protein. The capacity of the Ser-His dipeptide to catalyze the hydrolysis of several discrete ester and amide substrates is investigated using previously described conditions. This dipeptide does not catalyze the hydrolysis of amide or unactivated ester groups in any of the substrates under the conditions evaluated.

    View Publication Page
    05/15/16 | Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues.
    Seagraves KM, Arthur BJ, Egnor SE
    The Journal of Experimental Biology. 2016 May 15;219(Pt 10):1437-48. doi: 10.1242/jeb.129361

    Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience - with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice.

    View Publication Page
    11/10/16 | Evolved repression overcomes enhancer robustness.
    Preger-Ben Noon E, Davis FP, Stern DL
    Developmental Cell. 2016 Nov 10;39(5):572-84. doi: 10.1016/j.devcel.2016.10.010

    Biological systems display extraordinary robustness. Robustness of transcriptional enhancers results mainly from clusters of binding sites for the same transcription factor, and it is not clear how robust enhancers can evolve loss of expression through point mutations. Here, we report the high-resolution functional dissection of a robust enhancer of the shavenbaby gene that has contributed to morphological evolution. We found that robustness is encoded by many binding sites for the transcriptional activator Arrowhead and that, during evolution, some of these activator sites were lost, weakening enhancer activity. Complete silencing of enhancer function, however, required evolution of a binding site for the spatially restricted potent repressor Abrupt. These findings illustrate that recruitment of repressor binding sites can overcome enhancer robustness and may minimize pleiotropic consequences of enhancer evolution. Recruitment of repression may be a general mode of evolution to break robust regulatory linkages.

    View Publication Page
    Looger Lab
    06/27/16 | Falling apart.
    Marvin JS, Looger LL
    eLife. 2016;5:. doi: 10.7554/eLife.18203

    Destabilized nanobodies can be used to deliver fluorescent proteins and enzymes to specific targets inside cells.

    View Publication Page
    04/14/16 | Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?
    Imhof S, Fragoso C, Hemphill A, von Schubert C, Li D, Legant W, Betzig E
    F1000 Research. 2016 Apr 14;5:682. doi: 10.12688/f1000research.8249.1

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

    View Publication Page
    09/26/16 | Flight of the dragonflies and damselflies.
    Bomphrey RJ, Nakata T, Henningsson P, Lin H
    Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2016 Sep 26;371(1704):. doi: 10.1098/rstb.2015.0389

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

    View Publication Page
    Svoboda Lab
    05/03/16 | Flow of information underlying a tactile decision in mice.
    Li N, Guo ZV, Chen T, Svoboda K
    Micro-, Meso- and Macro-Dynamics of the Brain:. doi: 10.1007/978-3-319-28802-4_3

    Motor planning allows us to conceive, plan, and initiate skilled motor behaviors. Motor planning involves activity distributed widely across the cortex. How this activity dynamically comes together to guide movement remains an unsolved problem. We study motor planning in mice performing a tactile decision behavior. Head-fixed mice discriminate object locations with their whiskers and report their choice by directional licking (“lick left”/“lick right”). A short-term memory component separates tactile “sensation” and “action” into distinct epochs. Using loss-of-function experiments, cell-type specific electrophysiology, and cellular imaging, we delineate when and how activity in specific brain areas and cell types drives motor planning in mice. Our results suggest that information flows serially from sensory to motor areas during motor planning. The motor cortex circuit maintains the motor plan during short-term memory and translates the motor plan into motor commands that drive the upcoming directional licking.

    View Publication Page