Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

34 Janelia Publications

Showing 1-10 of 34 results
Your Criteria:
    05/01/24 | A survival-critical role for Drosophila giant interneurons during predation
    Cynthia M. Chai , Carmen Morrow , Dhyey D. Parikh , Catherine R. von Reyn , Anthony Leonardo , Gwyneth M Card
    bioRxiv. 2024 May 1:. doi: 10.1101/2024.04.30.591368

    Large axon-diameter descending neurons are metabolically costly but transmit information rapidly from sensory neurons in the brain to motor neurons in the nerve cord. They have thus endured as a common feature of escape circuits in many animal species where speed is paramount. Though often considered isolated command neurons triggering fast-reaction-time, all-or-none escape responses, giant neurons are just one of multiple parallel pathways enabling selection between behavioral alternatives. Such degeneracy among escape circuits makes it unclear if and how giant neurons benefit prey fitness. Here we competed Drosophila melanogaster flies with genetically-silenced Giant Fibers (GFs) against flies with functional GFs in an arena with wild-caught damselfly predators and find that GF silencing decreases prey survival. Kinematic analysis of damselfly attack trajectories shows that decreased prey survival fitness results from GF-silenced flies failing to escape during predator attack speeds and approach distances that would normally elicit successful escapes. When challenged with a virtual looming predator, fly GFs promote survival by enforcing selection of a short-duration takeoff sequence as opposed to reducing reaction time. Our findings support a role for the GFs in promoting prey survival by influencing action selection as a means to enhance escape performance during realistically complex predation scenarios.

    View Publication Page
    Ji Lab
    05/05/24 | Adaptive optical third-harmonic generation microscopy for in vivo imaging of tissues
    Cristina Rodríguez , Daisong Pan , Ryan G. Natan , Manuel A. Mohr , Max Miao , Xiaoke Chen , Trent R. Northen , John P. Vogel , Na Ji
    bioRxiv. 2024 May 05:. doi: 10.1101/2024.05.02.592275

    Third-harmonic generation microscopy is a powerful label-free nonlinear imaging technique, providing essential information about structural characteristics of cells and tissues without requiring external labelling agents. In this work, we integrated a recently developed compact adaptive optics module into a third-harmonic generation microscope, to measure and correct for optical aberrations in complex tissues. Taking advantage of the high sensitivity of the third-harmonic generation process to material interfaces and thin membranes, along with the 1,300-nm excitation wavelength used here, our adaptive optical third-harmonic generation microscope enabled high-resolution in vivo imaging within highly scattering biological model systems. Examples include imaging of myelinated axons and vascular structures within the mouse spinal cord and deep cortical layers of the mouse brain, along with imaging of key anatomical features in the roots of the model plant Brachypodium distachyon. In all instances, aberration correction led to significant enhancements in image quality.

    View Publication Page
    05/07/24 | An interphase actin wave promotes mitochondrial content mixing and organelle homeostasis.
    Coscia SM, Moore AS, Thompson CP, Tirrito CF, Ostap EM, Holzbaur EL
    Nat Commun. 2024 May 07;15(1):3793. doi: 10.1038/s41467-024-48189-1

    Across the cell cycle, mitochondrial dynamics are regulated by a cycling wave of actin polymerization/depolymerization. In metaphase, this wave induces actin comet tails on mitochondria that propel these organelles to drive spatial mixing, resulting in their equitable inheritance by daughter cells. In contrast, during interphase the cycling actin wave promotes localized mitochondrial fission. Here, we identify the F-actin nucleator/elongator FMNL1 as a positive regulator of the wave. FMNL1-depleted cells exhibit decreased mitochondrial polarization, decreased mitochondrial oxygen consumption, and increased production of reactive oxygen species. Accompanying these changes is a loss of hetero-fusion of wave-fragmented mitochondria. Thus, we propose that the interphase actin wave maintains mitochondrial homeostasis by promoting mitochondrial content mixing. Finally, we investigate the mechanistic basis for the observation that the wave drives mitochondrial motility in metaphase but mitochondrial fission in interphase. Our data indicate that when the force of actin polymerization is resisted by mitochondrial tethering to microtubules, as in interphase, fission results.

    View Publication Page
    05/16/24 | Analysis of developmental gene expression using smFISH and in silico staging of C. elegans embryos
    Breimann L, Bahry E, Zouinkhi M, Kolyvanov K, Street LA, Preibisch S, Ercan S
    bioRxiv. 2024 May 16:. doi: 10.1101/2024.05.15.594414

    Regulation of transcription during embryogenesis is key to development and differentiation. To study transcript expression throughout Caenorhabditis elegans embryogenesis at single-molecule resolution, we developed a high-throughput single-molecule fluorescence in situ hybridization (smFISH) method that relies on computational methods to developmentally stage embryos and quantify individual mRNA molecules in single embryos. We applied our system to sdc-2, a zygotically transcribed gene essential for hermaphrodite development and dosage compensation. We found that sdc-2 is rapidly activated during early embryogenesis by increasing both the number of mRNAs produced per transcription site and the frequency of sites engaged in transcription. Knockdown of sdc-2 and dpy-27, a subunit of the dosage compensation complex (DCC), increased the number of active transcription sites for the X chromosomal gene dpy-23 but not the autosomal gene mdh-1, suggesting that the DCC reduces the frequency of dpy-23 transcription. The temporal resolution from in silico staging of embryos showed that the deletion of a single DCC recruitment element near the dpy-23 gene causes higher dpy-23 mRNA expression after the start of dosage compensation, which could not be resolved using mRNAseq from mixed-stage embryos. In summary, we have established a computational approach to quantify temporal regulation of transcription throughout C. elegans embryogenesis and demonstrated its potential to provide new insights into developmental gene regulation.

    View Publication Page
    05/20/24 | Astrocyte Calcium Signaling
    Ahrens MB, Khakh BS, Poskanzer KE
    Cold Spring Harb Perspect Biol. 2024 May 20:. doi: 10.1101/cshperspect.a041353

    Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca signaling.

    View Publication Page
    05/15/24 | Bacteria-organelle communication in physiology and disease
    Lee Y, Senturk M, Guan Y, Wang MC
    J Cell Biol. 2024 May 15;223(7):. doi: 10.1083/jcb.202310134

    Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).

    View Publication Page
    05/15/24 | Building momentum through networks: Bioimaging across the Americas
    De Niz M, Escobedo García R, Terán Ramirez C, Pakowski Y, Abonza Y, Bialy N, Orr VL, Olivera A, Abonza V, Alleva K, Allodi S, Almeida MF, Becerril Cuevas AR, Bonnet F, Burgos Solorio A, Chew T, Chiabrando G, Cimini B, Cleret-Buhot A, Contreras Jiménez G, Daza L, De Sá V, De Val N, Delgado-Álvarez DL, Eliceiri K, Fiolka R, Grecco H, Hanein D, Hernández Herrera P, Hockberger P, Hernandez HO, Hernandez Guadarrama Y, Itano M, Jacobs CA, Jiménez-García LF, Jiménez Sabinina V, Kamaid A, Keppler A, Kumar A, Lacoste J, Lovy A, Luby-Phelps K, Mahadevan-Jansen A, Malacrida L, Mehta SB, Miller C, Miranda K, Moore JA, North A, O'Toole P, Olivares Urbano M, Pietrasanta LI, Portugal RV, Rossi AH, Sanchez Contreras J, Strambio-De-Castilla C, Soldevila G, Vale B, Vazquez D, Wood C, Brown CM, Guerrero A
    Journal of Microscopy. 2024 May 15;n/a:. doi: https://doi.org/10.1111/jmi.13318

    In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

    View Publication Page
    05/14/24 | Compartmentalized Cytoplasmic Flows Direct Protein Transport to the Cell’s Leading Edge
    Galbraith CG, English BP, Boehm U, Galbraith JA
    bioRxiv. 2024 May 14:. doi: 10.1101/2024.05.12.593794

    Inside the cell, proteins essential for signaling, morphogenesis, and migration navigate complex pathways, typically via vesicular trafficking or microtubule-driven mechanisms 1-3. However, the process by which soluble cytoskeletal monomers maneuver through the cytoplasm’s ever-changing environment to reach their destinations without using these pathways remains unknown. 4-6 Here, we show that actin cytoskeletal treadmilling leads to the formation of a semi-permeable actin-myosin barrier, creating a specialized compartment separated from the rest of the cell body that directs proteins toward the cell edge by advection, diffusion facilitated by fluid flow. Contraction at this barrier generates a molecularly non-specific fluid flow that transports actin, actin-binding proteins, adhesion proteins, and even inert proteins forward. The local curvature of the barrier specifically targets these proteins toward protruding edges of the leading edge, sites of new filament growth, effectively coordinating protein distribution with cellular dynamics. Outside this compartment, diffusion remains the primary mode of protein transport, contrasting sharply with the directed advection within. This discovery reveals a novel protein transport mechanism that redefines the front of the cell as a pseudo-organelle, actively orchestrating protein mobilization for cellular front activities such as protrusion and adhesion. By elucidating a new model of protein dynamics at the cellular front, this work contributes a critical piece to the puzzle of how cells adapt their internal structures for targeted and rapid response to extracellular cues. The findings challenge the current understanding of intracellular transport, suggesting that cells possess highly specialized and previously unrecognized organizational strategies for managing protein distribution efficiently, providing a new framework for understanding the cellular architecture’s role in rapid response and adaptation to environmental changes.

    View Publication Page
    04/25/24 | Connectomic Analysis of Mitochondria in the Central Brain of Drosophila
    Patricia K Rivlin , Michal Januszewski , Kit D Longden , Erika Neace , Louis K Scheffer , Christopher Ordish , Jody Clements , Elliott Phillips , Natalie Smith , Satoko Takemura , Lowell Umayam , Claire Walsh , Emily A Yakal , Stephen M Plaza , Stuart Berg
    bioRxiv. 2024 Apr 25:. doi: 10.1101/2024.04.21.590464

    Mitochondria are an integral part of the metabolism of a neuron. EM images of fly brain volumes, taken for connectomics, contain mitochondria as well as the cells and synapses that have already been reported. Here, from the Drosophila hemibrain dataset, we extract, classify, and measure approximately 6 million mitochondria among roughly 21 thousand neurons of more than 5500 cell types. Each mitochondrion is classified by its appearance - dark and dense, light and sparse, or intermediate - and the location, orientation, and size (in voxels) are annotated. These mitochondria are added to our publicly available data portal, and each synapse is linked to its closest mitochondrion. Using this data, we show quantitative evidence that mitochodrial trafficing extends to the smallest dimensions in neurons. The most basic characteristics of mitochondria - volume, distance from synapses, and color - vary considerably between cell types, and between neurons with different neurotransmitters. We find that polyadic synapses with more post-synaptic densities (PSDs) have closer and larger mitochondria on the pre-synaptic side, but smaller and more distant mitochondria on the PSD side. We note that this relationship breaks down for synapses with only one PSD, suggesting a different role for such synapses.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    05/16/24 | Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment.
    Daugird TA, Shi Y, Holland KL, Rostamian H, Liu Z, Lavis LD, Rodriguez J, Strahl BD, Legant WR
    Nat. Commun.. 2024 May 16:. doi: 10.1038/s41467-024-48562-0

    In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we present an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrate that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacts nucleosome diffusive properties in a manner that is dependent both on local chromatin density and on relative location within the nucleus. Our results support a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Additionally, they reveal that nuclear heterogeneity arises from both active and passive processes and highlight the need to account for different organizational principles when modeling different chromatin environments.

    View Publication Page