Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

17 Janelia Publications

Showing 1-10 of 17 results
Your Criteria:
    04/01/20 | 3D ATAC-PALM: super-resolution imaging of the accessible genome.
    Xie L, Dong P, Chen X, Hsieh TS, Banala S, De Marzio M, English BP, Qi Y, Jung SK, Kieffer-Kwon K, Legant WR, Hansen AS, Schulmann A, Casellas R, Zhang B, Betzig E, Lavis LD, Chang HY, Tjian R, Liu Z
    Nature Methods. 2020 Apr 01;17(4):430-6. doi: 10.1038/s41592-020-0775-2

    To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA–fluorescence in situ hybridization (FISH), RNA–FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.

    View Publication Page
    08/16/24 | A high-throughput microfabricated platform for rapid quantification of metastatic potential.
    Bhattacharya S, Ettela A, Haydak J, Hobson CM, Stern A, Yoo M, Chew T, Gusella GL, Gallagher EJ, Hone JC, Azeloglu EU
    Sci Adv. 2024 Aug 16;10(33):eadk0015. doi: 10.1126/sciadv.adk0015

    Assays that measure morphology, proliferation, motility, deformability, and migration are used to study the invasiveness of cancer cells. However, native invasive potential of cells may be hidden from these contextual metrics because they depend on culture conditions. We created a micropatterned chip that mimics the native environmental conditions, quantifies the invasive potential of tumor cells, and improves our understanding of the malignancy signatures. Unlike conventional assays, which rely on indirect measurements of metastatic potential, our method uses three-dimensional microchannels to measure the basal native invasiveness without chemoattractants or microfluidics. No change in cell death or proliferation is observed on our chips. Using six cancer cell lines, we show that our system is more sensitive than other motility-based assays, measures of nuclear deformability, or cell morphometrics. In addition to quantifying metastatic potential, our platform can distinguish between motility and invasiveness, help study molecular mechanisms of invasion, and screen for targeted therapeutics.

    View Publication Page
    01/22/20 | Accurate measurement of fast endocytic recycling kinetics in real time.
    Jonker CT, Deo C, Zager PJ, Tkachuk AN, Weinstein AM, Rodriguez-Boulan E, Lavis LD, Schreiner R
    Journal of Cell Science. 2020 Jan 22;133(2):. doi: 10.1242/jcs.231225

    The fast turnover of membrane components through endocytosis and recycling allows precise control of the composition of the plasma membrane. Endocytic recycling can be rapid with some molecules returning to the plasma membrane with a <5 minutes. Existing methods to study these trafficking pathways utilize chemical, radioactive, or fluorescent labeling of cell surface receptors in pulse-chase experiments, which require tedious washing steps and manual collection of samples. Here, we introduce a live-cell endocytic recycling assay, based on a newly designed cell-impermeable, fluorogenic ligand for HaloTag: 'Janelia Fluor 635i' (JFi; i=impermeant) which allows real-time detection of membrane receptor recycling at steady state. We used this method to study the effect of iron depletion on transferrin receptor (TfR) recycling using the chelator desferrioxamine. We found this perturbation significantly increases the TfR recycling rate. The high temporal resolution and simplicity of this assay provides a clear advantage over extant methods and makes it ideal for large scale cellular imaging studies. This assay can be adapted to examine other cellular kinetic parameters such as protein turnover and biosynthetic trafficking.

    View Publication Page
    11/13/22 | Brain-wide measurement of protein turnover with high spatial and temporal resolution
    Boaz Mohar , Jonathan B. Grimm , Ronak Patel , Timothy A. Brown , Paul Tillberg , Luke D. Lavis , Nelson Spruston , Karel Svoboda
    bioRxiv. 2022 Nov 13:. doi: 10.1101/2022.11.12.516226

    Cells regulate function by synthesizing and degrading proteins. This turnover ranges from minutes to weeks, as it varies across proteins, cellular compartments, cell types, and tissues. Current methods for tracking protein turnover lack the spatial and temporal resolution needed to investigate these processes, especially in the intact brain, which presents unique challenges. We describe a pulse-chase method (DELTA) for measuring protein turnover with high spatial and temporal resolution throughout the body, including the brain. DELTA relies on rapid covalent capture by HaloTag of fluorophores that were optimized for bioavailability in vivo. The nuclear protein MeCP2 showed brain region- and cell type-specific turnover. The synaptic protein PSD95 was destabilized in specific brain regions by behavioral enrichment. A novel variant of expansion microscopy further facilitated turnover measurements at individual synapses. DELTA enables studies of adaptive and maladaptive plasticity in brain-wide neural circuits.

    View Publication Page
    01/02/25 | Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopyAbstract
    Guo M, Wu Y, Hobson CM, Su Y, Qian S, Krueger E, Christensen R, Kroeschell G, Bui J, Chaw M, Zhang L, Liu J, Hou X, Han X, Lu Z, Ma X, Zhovmer A, Combs C, Moyle M, Yemini E, Liu H, Liu Z, Benedetto A, La Riviere P, Colón-Ramos D, Shroff H
    Nature Communications. Jan-12-2025;16(1):. doi: 10.1038/s41467-024-55267-x

    Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations. We use simulations and experiments to show that applying the trained ‘de-aberration’ networks outperforms alternative methods, providing restoration on par with adaptive optics techniques; and subsequently apply the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution microscopy. In all cases, the improved quality of the restored data facilitates qualitative image inspection and improves downstream image quantitation, including orientational analysis of blood vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos.

    View Publication Page
    03/08/21 | Expansion-Assisted Iterative-FISH defines lateral hypothalamus spatio-molecular organization
    Yuhan Wang , Mark Eddison , Greg Fleishman , Martin Weigert , Shengjin Xu , Frederick E. Henry , Tim Wang , Andrew L. Lemire , Uwe Schmidt , Hui Yang , Konrad Rokicki , Cristian Goina , Karel Svoboda , Eugene W. Myers , Stephan Saalfeld , Wyatt Korff , Scott M. Sternson , Paul W. Tillberg
    bioRxiv. 2021 Mar 8:. doi: 10.1101/2021.03.08.434304

    Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine novel spatially and molecularly defined subregions. EASI-FISH also facilitates iterative re-analysis of scRNA-Seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.

    View Publication Page
    01/08/25 | HD2Net: A Deep Learning Framework for Simultaneous Denoising and Deaberration in Fluorescence Microscopy
    Hou X, Li Y, Hobson CM, Shroff H, Guo M, Liu H
    bioRxiv. 01/2025:. doi: 10.1101/2025.01.06.631475

    Fluorescence microscopy is essential for biological research, offering high-contrast imaging of microscopic structures. However, the quality of these images is often compromised by optical aberrations and noise, particularly in low signal-to-noise ratio (SNR) conditions. While adaptive optics (AO) can correct aberrations, it requires costly hardware and slows down imaging; whereas current denoising approaches boost the SNR but leave out the aberration compensation. To address these limitations, we introduce HD2Net, a deep learning framework that enhances image quality by simultaneously denoising and suppressing the effect of aberrations without the need for additional hardware. Building on our previous work, HD2Net incorporates noise estimation and aberration removal modules, effectively restoring images degraded by noise and aberrations. Through comprehensive evaluation of synthetic phantoms and biological data, we demonstrate that HD2Net outperforms existing methods, significantly improving image resolution and contrast. This framework offers a promising solution for enhancing biological imaging, particularly in challenging aberrating and low-light conditions.

    View Publication Page
    01/08/25 | HD2Net: A Deep Learning Framework for Simultaneous Denoising and Deaberration in Fluorescence Microscopy
    Hou X, Li Y, Hobson CM, Shroff H, Guo M, Liu H
    bioRxiv. 2025 Jan 8:. doi: 10.1101/2025.01.06.631475

    Fluorescence microscopy is essential for biological research, offering high-contrast imaging of microscopic structures. However, the quality of these images is often compromised by optical aberrations and noise, particularly in low signal-to-noise ratio (SNR) conditions. While adaptive optics (AO) can correct aberrations, it requires costly hardware and slows down imaging; whereas current denoising approaches boost the SNR but leave out the aberration compensation. To address these limitations, we introduce HD2Net, a deep learning framework that enhances image quality by simultaneously denoising and suppressing the effect of aberrations without the need for additional hardware. Building on our previous work, HD2Net incorporates noise estimation and aberration removal modules, effectively restoring images degraded by noise and aberrations. Through comprehensive evaluation of synthetic phantoms and biological data, we demonstrate that HD2Net outperforms existing methods, significantly improving image resolution and contrast. This framework offers a promising solution for enhancing biological imaging, particularly in challenging aberrating and low-light conditions.

    View Publication Page
    06/27/24 | Lattice light sheet microscopy reveals 4D force propagation dynamics and leading-edge behaviors in an embryonic epithelium in Drosophila.
    Vanderleest TE, Xie Y, Budhathoki R, Linvill K, Hobson C, Heddleston J, Loerke D, Blankenship JT
    Curr Biol. 2024 Jun 27:. doi: 10.1016/j.cub.2024.06.017

    How pulsed contractile dynamics drive the remodeling of cell and tissue topologies in epithelial sheets has been a key question in development and disease. Due to constraints in imaging and analysis technologies, studies that have described the in vivo mechanisms underlying changes in cell and neighbor relationships have largely been confined to analyses of planar apical regions. Thus, how the volumetric nature of epithelial cells affects force propagation and remodeling of the cell surface in three dimensions, including especially the apical-basal axis, is unclear. Here, we perform lattice light sheet microscopy (LLSM)-based analysis to determine how far and fast forces propagate across different apical-basal layers, as well as where topological changes initiate from in a columnar epithelium. These datasets are highly time- and depth-resolved and reveal that topology-changing forces are spatially entangled, with contractile force generation occurring across the observed apical-basal axis in a pulsed fashion, while the conservation of cell volumes constrains instantaneous cell deformations. Leading layer behaviors occur opportunistically in response to favorable phasic conditions, with lagging layers "zippering" to catch up as new contractile pulses propel further changes in cell topologies. These results argue against specific zones of topological initiation and demonstrate the importance of systematic 4D-based analysis in understanding how forces and deformations in cell dimensions propagate in a three-dimensional environment.

    View Publication Page
    01/20/23 | Multimodal mapping of cell types and projections in the central nucleus of the amygdala
    Yuhan Wang , Sabine Krabbe , Mark Eddison , Fredrick E. Henry , Greg Fleishman , Andrew L. Lemire , Lihua Wang , Wyatt Korff , Paul W. Tillberg , Andreas Lüthi , Scott M. Sternson
    eLife. 2023 Jan 20:. doi: 10.7554/eLife.84262

    The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-Seq) to classify molecularly defined cell types in the CEA and identified marker-genes to map the location of these neuronal types using expansion assisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ∼30,000 molecularly defined CEA neurons. Our study revealed spatio-molecular organization of the CEA, with medial and lateral CEA associated with distinct cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker-gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.

    View Publication Page