Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2685 Janelia Publications

Showing 101-110 of 2685 results
Sternson LabScheffer Lab
12/04/14 | A genetically specified connectomics approach applied to long-range feeding regulatory circuits.
Atasoy D, Betley JN, Li W, Su HH, Sertel SM, Scheffer LK, Simpson JH, Fetter RD, Sternson SM
Nature Neuroscience. 2014 Dec;17(12):1830-9. doi: 10.1038/nn.3854

Synaptic connectivity and molecular composition provide a blueprint for information processing in neural circuits. Detailed structural analysis of neural circuits requires nanometer resolution, which can be obtained with serial-section electron microscopy. However, this technique remains challenging for reconstructing molecularly defined synapses. We used a genetically encoded synaptic marker for electron microscopy (GESEM) based on intra-vesicular generation of electron-dense labeling in axonal boutons. This approach allowed the identification of synapses from Cre recombinase-expressing or GAL4-expressing neurons in the mouse and fly with excellent preservation of ultrastructure. We applied this tool to visualize long-range connectivity of AGRP and POMC neurons in the mouse, two molecularly defined hypothalamic populations that are important for feeding behavior. Combining selective ultrastructural reconstruction of neuropil with functional and viral circuit mapping, we characterized some basic features of circuit organization for axon projections of these cell types. Our findings demonstrate that GESEM labeling enables long-range connectomics with molecularly defined cell types.

View Publication Page
Fitzgerald Lab
06/29/22 | A geometric framework to predict structure from function in neural networks
Biswas T, Fitzgerald JE
Physical Review Research. 2022 Jun 29;4(2):023255. doi: 10.1103/PhysRevResearch.4.023255

Neural computation in biological and artificial networks relies on nonlinear synaptic integration. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function. However, quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of rectified-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. We then use this analytical characterization to rigorously analyze the solution space geometry and derive certainty conditions guaranteeing a non-zero synapse between neurons. Numerical simulations of feedforward and recurrent networks verify our analytical results. Our theoretical framework could be applied to neural activity data to make anatomical predictions that follow generally from the model architecture. It thus provides novel opportunities for discerning what model features are required to accurately relate neural network structure and function.

View Publication Page
10/24/14 | A giant fibre bypass for the fly.
Zwart M
Journal of Experimental Biology. 2014 Oct 24;217(17):2988-89. doi: 10.1242/​jeb.095000
11/05/24 | A global dopaminergic learning rate enables adaptive foraging across many options
Grima LL, Guo Y, Narayan L, Hermundstad AM, Dudman JT
bioRxiv. 2024 Nov 05:. doi: 10.1101/2024.11.04.621923

In natural environments, animals must efficiently allocate their choices across multiple concurrently available resources when foraging, a complex decision-making process not fully captured by existing models. To understand how rodents learn to navigate this challenge we developed a novel paradigm in which untrained, water-restricted mice were free to sample from six options rewarded at a range of deterministic intervals and positioned around the walls of a large ( 2m) arena. Mice exhibited rapid learning, matching their choices to integrated reward ratios across six options within the first session. A reinforcement learning model with separate states for staying or leaving an option and a dynamic, global learning rate was able to accurately reproduce mouse learning and decision-making. Fiber photometry recordings revealed that dopamine in the nucleus accumbens core (NAcC), but not dorsomedial striatum (DMS), more closely reflected the global learning rate than local error-based updating. Altogether, our results provide insight into the neural substrate of a learning algorithm that allows mice to rapidly exploit multiple options when foraging in large spatial environments.

View Publication Page
03/30/21 | A guide to accurate reporting in digital image processing - can anyone reproduce your quantitative analysis?
Aaron J, Chew T
Journal of Cell Science. 2021 Mar 30;134(6):. doi: 10.1242/jcs.254151

Considerable attention has been recently paid to improving replicability and reproducibility in life science research. This has resulted in commendable efforts to standardize a variety of reagents, assays, cell lines and other resources. However, given that microscopy is a dominant tool for biologists, comparatively little discussion has been offered regarding how the proper reporting and documentation of microscopy relevant details should be handled. Image processing is a critical step of almost any microscopy-based experiment; however, improper, or incomplete reporting of its use in the literature is pervasive. The chosen details of an image processing workflow can dramatically determine the outcome of subsequent analyses, and indeed, the overall conclusions of a study. This Review aims to illustrate how proper reporting of image processing methodology improves scientific reproducibility and strengthens the biological conclusions derived from the results.

View Publication Page
03/02/15 | A Hebbian/Anti-Hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features.
Pehlevan C, Chklovskii DB
2014 48th Asilomar Conference on Signals, Systems and Computers2014 48th Asilomar Conference on Signals, Systems and Computers. 2015 Mar 02:. doi: 10.1109/ACSSC.2014.7094553

Olshausen and Field (OF) proposed that neural computations in the primary visual cortex (V1) can be partially modelled by sparse dictionary learning. By minimizing the regularized representation error they derived an online algorithm, which learns Gabor-filter receptive fields from a natural image ensemble in agreement with physiological experiments. Whereas the OF algorithm can be mapped onto the dynamics and synaptic plasticity in a single-layer neural network, the derived learning rule is nonlocal - the synaptic weight update depends on the activity of neurons other than just pre- and postsynaptic ones – and hence biologically implausible. Here, to overcome this problem, we derive sparse dictionary learning from a novel cost-function - a regularized error of the symmetric factorization of the input’s similarity matrix. Our algorithm maps onto a neural network of the same architecture as OF but using only biologically plausible local learning rules. When trained on natural images our network learns Gabor-filter receptive fields and reproduces the correlation among synaptic weights hard-wired in the OF network. Therefore, online symmetric matrix factorization may serve as an algorithmic theory of neural computation. 

View Publication Page
Cui Lab

A large number of degrees of freedom are required to produce a high quality focus through random scattering media. Previous demonstrations based on spatial phase modulations suffer from either a slow speed or a small number of degrees of freedom. In this work, a high speed wavefront determination technique based on spatial frequency domain wavefront modulations is proposed and experimentally demonstrated, which is capable of providing both a high operation speed and a large number of degrees of freedom. The technique was employed to focus light through a strongly scattering medium and the entire wavefront was determined in 400 milliseconds,  three orders of magnitude faster than the previous report.

View Publication Page
Cui Lab

We demonstrate a high throughput, large compensation range, single-prism femtosecond pulse compressor, using a single prism and two roof mirrors. The compressor has zero angular dispersion, zero spatial dispersion, zero pulse-front tilt, and unity magnification. The high efficiency is achieved by adopting two roof mirrors as the retroreflectors. We experimentally achieved ~ -14500 fs2 group delay dispersion (GDD) with 30 cm of prism tip-roof mirror prism separation, and ~90.7% system throughput with the current implementation. With better components, the throughput can be even higher.

View Publication Page
Menon Lab
07/16/14 | A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain.
Thompson CL, Ng L, Menon V, Martinez S, Lee C, Glattfelder K, Sunkin SM, Henry A, Lau C, Dang C, Garcia-Lopez R, Martinez-Ferre A, Pombero A, Rubenstein JL, Wakeman WB, Hohmann J, Dee N, Sodt AJ, Young R, Smith K, Nguyen T, Kidney J, Kuan L, Jeromin A, Kaykas A, Miller J, Page D, Orta G, Bernard A, Riley Z, Smith S, Wohnoutka P, Hawrylycz MJ, Puelles L, Jones AR
Neuron. 2014 Jul 16;83(2):309-23. doi: 10.1016/j.neuron.2014.05.033

To provide a temporal framework for the genoarchitecture of brain development, we generated in situ hybridization data for embryonic and postnatal mouse brain at seven developmental stages for ∼2,100 genes, which were processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, seven reference atlases, an ontogenetic ontology, and tools to explore coexpression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (http://developingmouse.brain-map.org).

View Publication Page
08/16/24 | A high-throughput microfabricated platform for rapid quantification of metastatic potential.
Bhattacharya S, Ettela A, Haydak J, Hobson CM, Stern A, Yoo M, Chew T, Gusella GL, Gallagher EJ, Hone JC, Azeloglu EU
Sci Adv. 2024 Aug 16;10(33):eadk0015. doi: 10.1126/sciadv.adk0015

Assays that measure morphology, proliferation, motility, deformability, and migration are used to study the invasiveness of cancer cells. However, native invasive potential of cells may be hidden from these contextual metrics because they depend on culture conditions. We created a micropatterned chip that mimics the native environmental conditions, quantifies the invasive potential of tumor cells, and improves our understanding of the malignancy signatures. Unlike conventional assays, which rely on indirect measurements of metastatic potential, our method uses three-dimensional microchannels to measure the basal native invasiveness without chemoattractants or microfluidics. No change in cell death or proliferation is observed on our chips. Using six cancer cell lines, we show that our system is more sensitive than other motility-based assays, measures of nuclear deformability, or cell morphometrics. In addition to quantifying metastatic potential, our platform can distinguish between motility and invasiveness, help study molecular mechanisms of invasion, and screen for targeted therapeutics.

View Publication Page