Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2759 Janelia Publications

Showing 1481-1490 of 2759 results
05/15/18 | Lineage-guided Notch-dependent gliogenesis by multi-potent progenitors.
Ren Q, Awasaki T, Wang Y, Huang Y, Lee T
Development (Cambridge, England). 2018 May 15:. doi: 10.1242/dev.160127

Macroglial cells in the central nervous system exhibit regional specialization and carry out region-specific functions. Diverse glial cells arise from specific progenitors in specific spatiotemporal patterns. This raises an interesting possibility that there exist glial precursors with distinct developmental fates, which govern region-specific gliogenesis. Here we mapped the glial progeny produced by the type II neuroblasts, which, like vertebrate radial glia cells, yield both neurons and glia via intermediate neural progenitors (INPs). Distinct type II neuroblasts produce different characteristic sets of glia. A single INP can make both astrocyte-like and ensheathing glia, which co-occupy a relatively restrictive subdomain. Blocking apoptosis uncovers further lineage distinctions in the specification, proliferation, and survival of glial precursors. Both the switch from neurogenesis to gliogenesis and the subsequent glial expansion depend on Notch signaling. Taken together, lineage origins preconfigure the development of individual glial precursors with involvement of serial Notch actions in promoting gliogenesis.

View Publication Page
01/01/10 | Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain.
Lin S, Lai S, Yu H, Chihara T, Luo L, Lee T
Development. 2010 Jan;137(1):43-51. doi: 10.1242/dev.041699

Numb can antagonize Notch signaling to diversify the fates of sister cells. We report here that paired sister cells acquire different fates in all three Drosophila neuronal lineages that make diverse types of antennal lobe projection neurons (PNs). Only one in each pair of postmitotic neurons survives into the adult stage in both anterodorsal (ad) and ventral (v) PN lineages. Notably, Notch signaling specifies the PN fate in the vPN lineage but promotes programmed cell death in the missing siblings in the adPN lineage. In addition, Notch/Numb-mediated binary sibling fates underlie the production of PNs and local interneurons from common precursors in the lAL lineage. Furthermore, Numb is needed in the lateral but not adPN or vPN lineages to prevent the appearance of ectopic neuroblasts and to ensure proper self-renewal of neural progenitors. These lineage-specific outputs of Notch/Numb signaling show that a universal mechanism of binary fate decision can be utilized to govern diverse neural sibling differentiations.

View Publication Page
12/01/20 | Linking axon morphology to gene expression: a strategy for neuronal cell-type classification.
Winnubst J, Spruston N, Harris JA
Current Opinion in Neurobiology. 2020 Dec 01;65:70-76. doi: 10.1016/j.conb.2020.10.006

To study how the brain drives cognition and behavior we need to understand its cellular composition. Advances in single-cell transcriptomics have revolutionized our ability to characterize neuronal diversity. To arrive at meaningful descriptions of cell types, however, gene expression must be linked to structural and functional properties. Axonal projection patterns are an appropriate measure, as they are diverse, change only gradually over time, and they influence and constrain circuit function. Here, we consider how efforts to map transcriptional and morphological diversity in the mouse brain could be linked to generate a modern taxonomy of the mouse brain.

View Publication Page
12/01/20 | Linking axon morphology to gene expression: a strategy for neuronal cell-type classification.
Winnubst J, Spruston N, Harris JA
Current Opinion in Neurobiology. 2020 Dec 01;65:70-76. doi: 10.1016/j.conb.2020.10.006

To study how the brain drives cognition and behavior we need to understand its cellular composition. Advances in single-cell transcriptomics have revolutionized our ability to characterize neuronal diversity. To arrive at meaningful descriptions of cell types, however, gene expression must be linked to structural and functional properties. Axonal projection patterns are an appropriate measure, as they are diverse, change only gradually over time, and they influence and constrain circuit function. Here, we consider how efforts to map transcriptional and morphological diversity in the mouse brain could be linked to generate a modern taxonomy of the mouse brain.

View Publication Page
07/05/21 | Lipid droplets in the nervous system.
Ralhan I, Chang C, Lippincott-Schwartz J, Ioannou MS
Journal of Cell Biology. 2021 Jul 05;220(7):. doi: 10.1083/jcb.202102136

Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.

View Publication Page
05/08/23 | Lipid flipping in the omega-3 fatty-acid transporter.
Nguyen C, Lei H, Lai LT, Gallenito MJ, Mu X, Matthies D, Gonen T
Nature Communications. 2023 May 08;14(1):2571. doi: 10.1038/s41467-023-37702-7

Mfsd2a is the transporter for docosahexaenoic acid (DHA), an omega-3 fatty acid, across the blood brain barrier (BBB). Defects in Mfsd2a are linked to ailments from behavioral and motor dysfunctions to microcephaly. Mfsd2a transports long-chain unsaturated fatty-acids, including DHA and α-linolenic acid (ALA), that are attached to the zwitterionic lysophosphatidylcholine (LPC) headgroup. Even with the recently determined structures of Mfsd2a, the molecular details of how this transporter performs the energetically unfavorable task of translocating and flipping lysolipids across the lipid bilayer remains unclear. Here, we report five single-particle cryo-EM structures of Danio rerio Mfsd2a (drMfsd2a): in the inward-open conformation in the ligand-free state and displaying lipid-like densities modeled as ALA-LPC at four distinct positions. These Mfsd2a snapshots detail the flipping mechanism for lipid-LPC from outer to inner membrane leaflet and release for membrane integration on the cytoplasmic side. These results also map Mfsd2a mutants that disrupt lipid-LPC transport and are associated with disease.

View Publication Page
06/07/21 | Live and Let Dye.
Lavis LD
Biochemistry. 2021 Jun 07:. doi: 10.1021/acs.biochem.1c00299

The measurement of ion concentrations and fluxes inside living cells is key to understanding cellular physiology. Fluorescent indicators that can infiltrate and provide intel on the cellular environment are critical tools for biological research. Developing these molecular informants began with the seminal work of Racker and colleagues ( (1979) 18, 2210), who demonstrated the passive loading of fluorescein in living cells to measure changes in intracellular pH. This work continues, employing a mix of old and new tradecraft to create innovative agents for monitoring ions inside living systems.

View Publication Page
12/30/16 | Live cell single molecule-guided Bayesian localization super resolution microscopy.
Xu F, Zhang M, He W, Han R, Xue F, Liu Z, Zhang F, Lippincott-Schwartz J, Xu P
Cell Research. 2016 Dec 30:. doi: 10.1038/cr.2015.160
12/10/14 | Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins.
Fortin DA, Tillo SE, Yang G, Rah J, Melander JB, Bai S, Soler-Cedeño O, Qin M, Zemelman BV, Guo C, Mao T, Zhong H
Journal of Neuroscience. 2014 Dec 10;34(50):16698-712. doi: 10.1523/JNEUROSCI.3888-14.2014

Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo.

View Publication Page
09/16/13 | Live imaging of nervous system development and function using light-sheet microscopy.
Lemon WC, Keller PJ
Molecular Reproduction and Development. 2015 Jul;82(7-8):605-18. doi: 10.1002/mrd.22258

In vivo imaging applications typically require carefully balancing conflicting parameters. Often it is necessary to achieve high imaging speed, low photo-bleaching, and photo-toxicity, good three-dimensional resolution, high signal-to-noise ratio, and excellent physical coverage at the same time. Light-sheet microscopy provides good performance in all of these categories, and is thus emerging as a particularly powerful live imaging method for the life sciences. We see an outstanding potential for applying light-sheet microscopy to the study of development and function of the early nervous system in vertebrates and higher invertebrates. Here, we review state-of-the-art approaches to live imaging of early development, and show how the unique capabilities of light-sheet microscopy can further advance our understanding of the development and function of the nervous system. We discuss key considerations in the design of light-sheet microscopy experiments, including sample preparation and fluorescent marker strategies, and provide an outlook for future directions in the field.

View Publication Page