Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2657 Janelia Publications

Showing 1851-1860 of 2657 results
12/18/24 | Periodic ER-plasma membrane junctions support long-range Ca signal integration in dendrites.
Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
Cell. 2024 Dec 18:. doi: 10.1016/j.cell.2024.11.029

Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.

View Publication Page
01/23/23 | Periodic ER-plasma membrane junctions support long-range Ca signal integration in dendrites.
Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
Cell. 01/2025;188(2):484-500.e22. doi: 10.1016/j.cell.2024.11.029

Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.

View Publication Page
12/20/24 | Permanent cilia loss during cerebellar granule cell neurogenesis involves withdrawal of cilia maintenance and centriole capping.
Constable S, Ott CM, Lemire AL, White K, Xun Y, Lim A, Lippincott-Schwartz J, Mukhopadhyay S
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2408083121. doi: 10.1073/pnas.2408083121

Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles. Here, we identify molecular changes that accompany cilia deconstruction and centriole docking in GC neurons. We used single cell transcriptomic and immunocytological analyses to compare the transcript levels and subcellular localization of proteins between progenitor, differentiating, and mature GCs. Differentiating GCs lacked transcripts for key activators of premitotic cilia resorption, indicating that cilia disassembly in differentiating cells is distinct from premitotic cilia resorption. Instead, during differentiation, transcripts of many genes required for cilia maintenance-specifically those encoding components of intraflagellar transport, pericentrosomal material, and centriolar satellites-decreased. The abundance of several corresponding proteins in and around cilia and centrosomes also decreased. These changes coincided with downregulation of SHH signaling prior to differentiation, even in a mutant with excessive SHH activation. Finally, mother centrioles in maturing granule neurons recruited the cap complex protein, CEP97. These data suggest that a global, developmentally programmed decrease in cilium maintenance in differentiating GCs mediates cilia deconstruction, while capping of docked mother centrioles prevents cilia regrowth and dysregulated SHH signaling. Our study provides mechanistic insights expanding our understanding of permanent cilia loss in multiple tissue-specific contexts.

View Publication Page
08/13/24 | Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons.
Ott CM, Constable S, Nguyen TM, White K, Lee WA, Lippincott-Schwartz J, Mukhopadhyay S
J Cell Biol.. 2024 Aug 13;223(10):e202404038. doi: 10.1016/j.cub.2024.07.036

Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.

View Publication Page
01/11/18 | Persistent activity in a recurrent circuit underlies courtship memory in Drosophila.
Zhao X, Lenek D, Dag U, Dickson B, Keleman K
eLife. 2018 Jan 11;7:. doi: 10.7554/eLife.31425

Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBg), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory.

View Publication Page
06/05/18 | Persistent sodium current mediates the steep voltage dependence of spatial coding in hippocampal pyramidal neurons.
Hsu C, Zhao X, Milstein AD, Spruston N
Neuron. 2018 Jun 05:. doi: 10.1016/j.neuron.2018.05.025

The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal's position ("place cells") and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.

View Publication Page
Looger Lab
06/11/21 | Pervasive fold switching in a ubiquitous protein superfamily.
Lauren L. Porter , Allen K. Kim , Loren L. Looger , Anaya Majumdar , Mary Starich
bioRxiv. 2021 Jun 11:. doi: 10.1101/2021.06.10.447921

Fold-switching proteins challenge the one-sequence-one-structure paradigm by adopting multiple stable folds. Nevertheless, it is uncertain whether fold switchers are naturally pervasive or rare exceptions to the well-established rule. To address this question, we developed a predictive method and applied it to the NusG superfamily of >15,000 transcription factors. We predicted that a substantial population (25%) of the proteins in this family switch folds. Circular dichroism and nuclear magnetic resonance spectroscopies of 10 sequence-diverse variants confirmed our predictions. Thus, we leveraged family-wide predictions to determine both conserved contacts and taxonomic distributions of fold-switching proteins. Our results indicate that fold switching is pervasive in the NusG superfamily and that the single-fold paradigm significantly biases structure-prediction strategies.

View Publication Page
03/27/22 | Petascale pipeline for precise alignment of images from serial section electron microscopy.
Sergiy Popovych , Thomas Macrina , Nico Kemnitz , Manuel Castro , Barak Nehoran , Zhen Jia , J. Alexander Bae , Eric Mitchell , Shang Mu , Eric T. Trautman , Stephan Saalfeld , Kai Li , Sebastian Seung
bioRxiv. 2022 Mar 27:. doi: 10.1101/2022.03.25.485816

The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.

View Publication Page
01/04/24 | Petascale pipeline for precise alignment of images from serial section electron microscopy.
Popovych S, Macrina T, Kemnitz N, Castro M, Nehoran B, Jia Z, Bae JA, Mitchell E, Mu S, Trautman ET, Saalfeld S, Li K, Seung HS
Nature Communications. 2024 Jan 04;15(1):289. doi: 10.1038/s41467-023-44354-0

The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.

View Publication Page
01/01/14 | Pfam: the protein families database.
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Sean R. Eddy , Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M
Nucleic acids research. 2014 Jan;42:D222-30. doi: 10.1093/nar/gkt1223

Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures.

View Publication Page