Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2657 Janelia Publications

Showing 291-300 of 2657 results
03/16/15 | Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus.
Chung S, Spruston N, Koh S
PLoS One. 2015 Mar 16;10(3):e0119411. doi: 10.1371/journal.pone.0119411

Kainic acid-induced status epilepticus (KA-SE) in mature rats results in the development of spontaneous recurrent seizures and a pattern of cell death resembling hippocampal sclerosis in patients with temporal lobe epilepsy. In contrast, KA-SE in young animals before postnatal day (P) 18 is less likely to cause cell death or epilepsy. To investigate whether changes in neuronal excitability occur in the subiculum after KA-SE, we examined the age-dependent effects of SE on the bursting neurons of subiculum, the major output region of the hippocampus. Patch-clamp recordings were used to monitor bursting in pyramidal neurons in the subiculum of rat hippocampal slices. Neurons were studied either one or 2-3 weeks following injection of KA or saline (control) in immature (P15) or more mature (P30) rats, which differ in their sensitivity to KA as well as the long-term sequelae of the KA-SE. A significantly greater proportion of subicular pyramidal neurons from P15 rats were strong-bursting neurons and showed increased frequency-dependent bursting compared to P30 animals. Frequency-dependent burst firing was enhanced in P30, but not in P15 rats following KA-SE. The enhancement of bursting induced by KA-SE in more mature rats suggests that the frequency-dependent limitation of repetitive burst firing, which normally occurs in the subiculum, is compromised following SE. These changes could facilitate the initiation of spontaneous recurrent seizures or their spread from the hippocampus to other parts of the brain.

View Publication Page
05/30/24 | Aging atlas reveals cell-type-specific effects of pro-longevity strategies.
Gao SM, Qi Y, Zhang Q, Guan Y, Lee Y, Ding L, Wang L, Mohammed AS, Li H, Fu Y, Wang MC
Nat Aging. 2024 May 30:. doi: 10.1038/s43587-024-00631-1

Organismal aging involves functional declines in both somatic and reproductive tissues. Multiple strategies have been discovered to extend lifespan across species. However, how age-related molecular changes differ among various tissues and how those lifespan-extending strategies slow tissue aging in distinct manners remain unclear. Here we generated the transcriptomic Cell Atlas of Worm Aging (CAWA, http://mengwanglab.org/atlas ) of wild-type and long-lived strains. We discovered cell-specific, age-related molecular and functional signatures across all somatic and germ cell types. We developed transcriptomic aging clocks for different tissues and quantitatively determined how three different pro-longevity strategies slow tissue aging distinctively. Furthermore, through genome-wide profiling of alternative polyadenylation (APA) events in different tissues, we discovered cell-type-specific APA changes during aging and revealed how these changes are differentially affected by the pro-longevity strategies. Together, this study offers fundamental molecular insights into both somatic and reproductive aging and provides a valuable resource for in-depth understanding of the diversity of pro-longevity mechanisms.

View Publication Page
Sternson Lab
12/13/14 | Agouti-related protein neuron circuits that regulate appetite.
Sternson SM, Atasoy D
Neuroendocrinology. 2014 Nov 6;507(7491):238-42. doi: 10.1159/000369072

New tools for mapping and manipulating molecularly defined neural circuits have improved understanding of how the central nervous system regulates appetite. Studies focused on AGRP neurons, a starvation-sensitive hypothalamic population, have identified multiple circuit elements that can elicit or suppress feeding behavior. Distinct axon projections of this neuron population point to different circuits that regulate long-term appetite, short-term feeding, or visceral malaise-mediated anorexia. Here, we review recent studies examining these neural circuits that control food intake. © 2014 S. Karger AG, Basel.

View Publication Page
Sternson Lab
03/01/11 | AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.
Aponte Y, Atasoy D, Sternson SM
Nature Neuroscience. 2011 Mar;14(3):351-5. doi: 10.1038/nn.2739

Two intermingled hypothalamic neuron populations specified by expression of agouti-related peptide (AGRP) or pro-opiomelanocortin (POMC) positively and negatively influence feeding behavior, respectively, possibly by reciprocally regulating downstream melanocortin receptors. However, the sufficiency of these neurons to control behavior and the relationship of their activity to the magnitude and dynamics of feeding are unknown. To measure this, we used channelrhodopsin-2 for cell type-specific photostimulation. Activation of only 800 AGRP neurons in mice evoked voracious feeding within minutes. The behavioral response increased with photoexcitable neuron number, photostimulation frequency and stimulus duration. Conversely, POMC neuron stimulation reduced food intake and body weight, which required melanocortin receptor signaling. However, AGRP neuron-mediated feeding was not dependent on suppressing this melanocortin pathway, indicating that AGRP neurons directly engage feeding circuits. Furthermore, feeding was evoked selectively over drinking without training or prior photostimulus exposure, which suggests that AGRP neurons serve a dedicated role coordinating this complex behavior.

View Publication Page
05/15/21 | Algorithms underlying flexible phototaxis in larval zebrafish.
Chen AB, Deb D, Bahl A, Engert F
Journal of Experimental Biology. 2021 May 15;224(10):. doi: 10.1242/jeb.238386

To thrive, organisms must maintain physiological and environmental variables in suitable ranges. Given that these variables undergo constant fluctuations over varying time scales, how do biological control systems maintain control over these values? We explored this question in the context of phototactic behavior in larval zebrafish. We demonstrate that larval zebrafish use phototaxis to maintain environmental luminance at a set point, that the value of this set point fluctuates on a time scale of seconds when environmental luminance changes, and that it is determined by calculating the mean input across both sides of the visual field. These results expand on previous studies of flexible phototaxis in larval zebrafish; they suggest that larval zebrafish exert homeostatic control over the luminance of their surroundings, and that feedback from the surroundings drives allostatic changes to the luminance set point. As such, we describe a novel behavioral algorithm with which larval zebrafish exert control over a sensory variable.

View Publication Page
Schreiter LabLooger Lab
03/01/17 | All-optical functional synaptic connectivity mapping in acute brain slices using CaMPARI.
Zolnik TA, Sha F, Johenning F, Schreiter ER, Looger LL, Larkum ME, Sachdev RN
The Journal of Physiology. 2017 Mar 01;595(5):1465-77. doi: 10.1113/JP273116

The calcium-modulated photoactivatable ratiometric integrator CaMPARI (Fosque et al., 2015) facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labeling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and sub-threshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo-like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin-2-expressing long-range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network-wide, tunable, all-optical functional circuit mapping that captures supra- and sub-threshold depolarization. This article is protected by copyright. All rights reserved.

View Publication Page
09/01/23 | All-optical reporting of chloride ion driving force in the nervous system
Joshua S. Selfe , Teresa J. S. Steyn , Eran F. Shorer , Richard J. Burman , Kira M. Düsterwald , Ahmed S. Abdelfattah , Eric R. Schreiter , Sarah E. Newey , Colin J. Akerman , Joseph V. Raimondo
bioRxiv. 2023 Sep 01:. doi: 10.1101/2023.08.30.555464

Ionic driving forces provide the net electromotive force for ion movement across membranes and are therefore a fundamental property of all cells. In the nervous system, chloride driving force (DFCl) determines inhibitory signaling, as fast synaptic inhibition is mediated by chloride-permeable GABAA and glycine receptors. Here we present a new tool for all-Optical Reporting of CHloride Ion Driving force (ORCHID). We demonstrate ORCHID’s ability to provide accurate, high-throughput measurements of resting and dynamic DFCl from genetically targeted cell types over a range of timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFCl, reveals novel differences in DFCl between neurons and astrocytes under different network conditions, and affords the first in vivo measurements of intact DFCl in mouse cortical neurons. This work extends our understanding of chloride homeostasis and inhibitory synaptic transmission and establishes a precedent for utilizing all-optical methods to assess ionic driving force.

View Publication Page
10/16/24 | All-optical reporting of inhibitory receptor driving force in the nervous system
Selfe JS, Steyn TJ, Shorer EF, Burman RJ, Düsterwald KM, Kraitzick AZ, Abdelfattah AS, Schreiter ER, Newey SE, Akerman CJ, Raimondo JV
Nat Commun. 2024 Oct 16;15(1):8913. doi: 10.1038/s41467-024-53074-y

Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the nervous system, fast synaptic inhibition is mediated by chloride permeable GABA and glycine receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DF). Here we present a tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID's ability to provide accurate, high-throughput measurements of resting and dynamic DF from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DF, reveals differences in DF between neurons and astrocytes, and affords the first in vivo measurements of intact DF. This work extends our understanding of inhibitory synaptic transmission and demonstrates the potential for all-optical methods to assess ionic driving forces.

View Publication Page
11/20/23 | All-optical reporting of inhibitory receptor driving force in the nervous system.
Joshua S. Selfe , Teresa J. S. Steyn , Eran F. Shorer , Richard J. Burman , Kira M. Düsterwald , Ahmed S. Abdelfattah , Eric R. Schreiter , Sarah E. Newey , Colin J. Akerman , Joseph V. Raimondo
bioRxiv. 2023 Nov 20:. doi: 10.1101/2023.08.30.555464

Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the brain for example, fast synaptic inhibition is mediated by chloride permeable GABAA receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DFGABAA). Here we present a new tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID’s ability to provide accurate, high-throughput measurements of resting and dynamic DFGABAA from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFGABAA, reveals novel differences in DFGABAA between neurons and astrocytes, and affords the first in vivo measurements of intact DFGABAA. This work extends our understanding of inhibitory synaptic transmission and establishes a precedent for all-optical methods to assess ionic driving forces.

View Publication Page
Singer Lab
12/04/18 | Allatostatin-C/AstC-R2 is a novel pathway to modulate the circadian activity pattern in Drosophila.
Díaz MM, Schlichting M, Abruzzi KC, Long X, Rosbash M
Current Biology : CB. 2018 Dec 04;29(1):13-22. doi: 10.1016/j.cub.2018.11.005

Seven neuropeptides are expressed within the Drosophila brain circadian network. Our previous mRNA profiling suggested that Allatostatin-C (AstC) is an eighth neuropeptide and specifically expressed in dorsal clock neurons (DN1s). Our results here show that AstC is, indeed, expressed in DN1s, where it oscillates. AstC is also expressed in two less well-characterized circadian neuronal clusters, the DN3s and lateral-posterior neurons (LPNs). Behavioral experiments indicate that clock-neuron-derived AstC is required to mediate evening locomotor activity under short (winter-like) and long (summer-like) photoperiods. The AstC-Receptor 2 (AstC-R2) is expressed in LNds, the clock neurons that drive evening locomotor activity, and AstC-R2 is required in these neurons to modulate the same short photoperiod evening phenotype. Ex vivo calcium imaging indicates that AstC directly inhibits a single LNd. The results suggest that a novel AstC/AstC-R2 signaling pathway, from dorsal circadian neurons to an LNd, regulates the evening phase in Drosophila.

View Publication Page