Filter
Associated Lab
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (6) Apply Betzig Lab filter
- Clapham Lab (3) Apply Clapham Lab filter
- Espinosa Medina Lab (1) Apply Espinosa Medina Lab filter
- Feliciano Lab (4) Apply Feliciano Lab filter
- Funke Lab (2) Apply Funke Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Hess Lab (16) Apply Hess Lab filter
- Lavis Lab (7) Apply Lavis Lab filter
- Remove Lippincott-Schwartz Lab filter Lippincott-Schwartz Lab
- Liu (Zhe) Lab (12) Apply Liu (Zhe) Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Saalfeld Lab (4) Apply Saalfeld Lab filter
- Singer Lab (1) Apply Singer Lab filter
Associated Project Team
Associated Support Team
- Anatomy and Histology (1) Apply Anatomy and Histology filter
- Electron Microscopy (6) Apply Electron Microscopy filter
- Janelia Experimental Technology (1) Apply Janelia Experimental Technology filter
- Primary & iPS Cell Culture (2) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (1) Apply Project Technical Resources filter
- Scientific Computing Software (2) Apply Scientific Computing Software filter
- Viral Tools (1) Apply Viral Tools filter
- Vivarium (1) Apply Vivarium filter
Publication Date
- 2025 (8) Apply 2025 filter
- 2024 (11) Apply 2024 filter
- 2023 (8) Apply 2023 filter
- 2022 (7) Apply 2022 filter
- 2021 (14) Apply 2021 filter
- 2020 (8) Apply 2020 filter
- 2019 (12) Apply 2019 filter
- 2018 (11) Apply 2018 filter
- 2017 (9) Apply 2017 filter
- 2016 (8) Apply 2016 filter
- 2007 (1) Apply 2007 filter
97 Janelia Publications
Showing 21-30 of 97 resultsOne-third of the mammalian proteome is comprised of transmembrane and secretory proteins that are synthesized on endoplasmic reticulum (ER). Here, we investigate the spatial distribution and regulation of mRNAs encoding these membrane and secretory proteins (termed "secretome" mRNAs) through live cell, single molecule tracking to directly monitor the position and translation states of secretome mRNAs on ER and their relationship to other organelles. Notably, translation of secretome mRNAs occurred preferentially near lysosomes on ER marked by the ER junction-associated protein, Lunapark. Knockdown of Lunapark reduced the extent of secretome mRNA translation without affecting translation of other mRNAs. Less secretome mRNA translation also occurred when lysosome function was perturbed by raising lysosomal pH or inhibiting lysosomal proteases. Secretome mRNA translation near lysosomes was enhanced during amino acid deprivation. Addition of the integrated stress response inhibitor, ISRIB, reversed the translation inhibition seen in Lunapark knockdown cells, implying an eIF2 dependency. Altogether, these findings uncover a novel coordination between ER and lysosomes, in which local release of amino acids and other factors from ER-associated lysosomes patterns and regulates translation of mRNAs encoding secretory and membrane proteins.
The endoplasmic reticulum (ER) is a continuous, highly dynamic membrane compartment that is crucial for numerous basic cellular functions. The ER stretches from the nuclear envelope to the outer periphery of all living eukaryotic cells. This ubiquitous organelle shows remarkable structural complexity, adopting a range of shapes, curvatures, and length scales. Canonically, the ER is thought to be composed of two simple membrane elements: sheets and tubules. However, recent advances in superresolution light microscopy and three-dimensional electron microscopy have revealed an astounding diversity of nanoscale ER structures, greatly expanding our view of ER organization. In this review, we describe these diverse ER structures, focusing on what is known of their regulation and associated functions in mammalian cells.
The endoplasmic reticulum (ER) is a structurally complex, membrane-enclosed compartment that stretches from the nuclear envelope to the extreme periphery of eukaryotic cells. The organelle is crucial for numerous distinct cellular processes, but how these processes are spatially regulated within the structure is unclear. Traditional imaging-based approaches to understanding protein dynamics within the organelle are limited by the convoluted structure and rapid movement of molecular components. Here, we introduce a combinatorial imaging and machine learning-assisted image analysis approach to track the motion of photoactivated proteins within the ER of live cells. We find that simultaneous knowledge of the underlying ER structure is required to accurately analyze fluorescently-tagged protein redistribution, and after appropriate structural calibration we see all proteins assayed show signatures of Brownian diffusion-dominated motion over micron spatial scales. Remarkably, we find that in some cells the ER structure can be explored in a highly asymmetric manner, likely as a result of uneven connectivity within the organelle. This remains true independently of the size, topology, or folding state of the fluorescently-tagged molecules, suggesting a potential role for ER connectivity in driving spatially regulated biology in eukaryotes.
The inner mitochondrial membrane (IMM) is the site of bulk ATP generation in cells and has a broadly conserved lipid composition enriched in unsaturated phospholipids and cardiolipin (CL). While proteins that shape the IMM and its characteristic cristae membranes (CM) have been defined, specific mechanisms by which mitochondrial lipids dictate its structure and function have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions shape CM morphology and ATP generation. When modulating fatty acid unsaturation in engineered yeast strains, we observed that loss of di-unsaturated phospholipids (PLs) led to a breakpoint in IMM topology and respiratory capacity. We found that PL unsaturation modulates the organization of ATP synthases that shape cristae ridges. Based on molecular modeling of mitochondrial-specific membrane adaptations, we hypothesized that conical lipids like CL buffer against the effects of saturation on the IMM. In cells, we discovered that loss of CL collapses the IMM at intermediate levels of PL saturation, an effect that is independent of ATP synthase oligomerization. To explain this interaction, we employed a continuum modeling approach, finding that lipid and protein-mediated curvatures are predicted to act in concert to form curved membranes in the IMM. The model highlighted a snapthrough instability in cristae tubule formation, which could drive IMM collapse upon small changes in composition. The interaction between CL and di-unsaturated PLs suggests that growth conditions that alter the fatty acid pool, such as oxygen availability, could define CL function. While loss of CL only has a minimal phenotype under standard laboratory conditions, we show that its synthesis is essential under microaerobic conditions that better mimic natural yeast fermentation. Lipid and protein-mediated mechanisms of curvature generation can thus act together to support mitochondrial architecture under changing environments.
The goal when imaging bioprocesses with optical microscopy is to acquire the most spatiotemporal information with the least invasiveness. Deep neural networks have substantially improved optical microscopy, including image super-resolution and restoration, but still have substantial potential for artifacts. In this study, we developed rationalized deep learning (rDL) for structured illumination microscopy and lattice light sheet microscopy (LLSM) by incorporating prior knowledge of illumination patterns and, thereby, rationally guiding the network to denoise raw images. Here we demonstrate that rDL structured illumination microscopy eliminates spectral bias-induced resolution degradation and reduces model uncertainty by five-fold, improving the super-resolution information by more than ten-fold over other computational approaches. Moreover, rDL applied to LLSM enables self-supervised training by using the spatial or temporal continuity of noisy data itself, yielding results similar to those of supervised methods. We demonstrate the utility of rDL by imaging the rapid kinetics of motile cilia, nucleolar protein condensation during light-sensitive mitosis and long-term interactions between membranous and membrane-less organelles.
The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.
Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.
The endoplasmic reticulum (ER) is a continuous, highly dynamic membrane compartment that is crucial for numerous basic cellular functions. The ER stretches from the nuclear envelope to the outer periphery of all living eukaryotic cells. This ubiquitous organelle shows remarkable structural complexity, adopting a range of shapes, curvatures, and length scales. Canonically, the ER is thought to be composed of two simple membrane elements: sheets and tubules. However, recent advances in superresolution light microscopy and three-dimensional electron microscopy have revealed an astounding diversity of nanoscale ER structures, greatly expanding our view of ER organization. In this review, we describe these diverse ER structures, focusing on what is known of their regulation and associated functions in mammalian cells.
To coordinate cellular physiology, eukaryotic cells rely on the inter-organelle transfer of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites3. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle4,5. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation6,7, a clear understanding of their nanoscale structure and regulation is still lacking. Here, we combine 3D electron microscopy with high-speed molecular tracking of a model organelle tether, VAPB, to map the structure and diffusion landscape of ERMCSs. From EM reconstructions, we identified subdomains within the contact site where ER membranes dramatically deform to match local mitochondrial curvature. In parallel live cell experiments, we observed that the VAPB tethers that mediate this interface were not immobile, but rather highly dynamic, entering and leaving the site in seconds. These subdomains enlarged during nutrient stress, indicating ERMCSs can readily remodel under different physiological conditions. An ALS-associated mutation in VAPB altered the normal fluidity of contact sites, likely perturbing effective communication across the contact site and preventing remodeling. These results establish high speed single molecule imaging as a new tool for mapping the structure of contact site interfaces and suggest that the diffusion landscape of VAPB is a crucial component of ERMCS homeostasis.