Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

6 Janelia Publications

Showing 1-6 of 6 results
Your Criteria:
    04/17/24 | Machine learning reveals the control mechanics of an insect wing hinge
    Melis JM, Siwanowicz I, Dickinson MH
    Nature. 2024 Apr 17;628(8009):795-803. doi: 10.1038/s41586-024-07293-4

    Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.

    View Publication Page
    03/20/24 | Motor neurons generate pose-targeted movements via proprioceptive sculpting.
    Gorko B, Siwanowicz I, Close K, Christoforou C, Hibbard KL, Kabra M, Lee A, Park J, Li SY, Chen AB, Namiki S, Chen C, Tuthill JC, Bock DD, Rouault H, Branson K, Ihrke G, Huston SJ
    Nature. 2024 Mar 20:. doi: 10.1038/s41586-024-07222-5

    Motor neurons are the final common pathway through which the brain controls movement of the body, forming the basic elements from which all movement is composed. Yet how a single motor neuron contributes to control during natural movement remains unclear. Here we anatomically and functionally characterize the individual roles of the motor neurons that control head movement in the fly, Drosophila melanogaster. Counterintuitively, we find that activity in a single motor neuron rotates the head in different directions, depending on the starting posture of the head, such that the head converges towards a pose determined by the identity of the stimulated motor neuron. A feedback model predicts that this convergent behaviour results from motor neuron drive interacting with proprioceptive feedback. We identify and genetically suppress a single class of proprioceptive neuron that changes the motor neuron-induced convergence as predicted by the feedback model. These data suggest a framework for how the brain controls movements: instead of directly generating movement in a given direction by activating a fixed set of motor neurons, the brain controls movements by adding bias to a continuing proprioceptive-motor loop.

    View Publication Page
    03/15/24 | Social state gates vision using three circuit mechanisms in Drosophila
    Catherine E. Schretter , Tom Hindmarsh Sten , Nathan Klapoetke , Mei Shao , Aljoscha Nern , Marisa Dreher , Daniel Bushey , Alice A. Robie , Adam L. Taylor , Kristin M. Branson , Adriane Otopalik , Vanessa Ruta , Gerald M. Rubin
    bioRxiv. 2024 Mar 15:. doi: 10.1101/2024.03.15.585289

    Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well-studied. Yet, much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviors, flies need to focus on nearby flies. Here, we study how the flow of visual information is altered when female Drosophila enter an aggressive state. From the connectome, we identified three state-dependent circuit motifs poised to selectively amplify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioral and neurophysiological analyses, we show that each of these circuit motifs function during female aggression. We reveal that features of this same switch operate in males during courtship pursuit, suggesting that disparate social behaviors may share circuit mechanisms. Our work provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    03/14/24 | Whole-body simulation of realistic fruit fly locomotion with deep reinforcement learning
    Roman Vaxenburg , Igor Siwanowicz , Josh Merel , Alice A Robie , Carmen Morrow , Guido Novati , Zinovia Stefanidi , Gwyneth M Card , Michael B Reiser , Matthew M Botvinick , Kristin M Branson , Yuval Tassa , Srinivas C Turaga
    bioRxiv. 2024 Mar 14:. doi: 10.1101/2024.03.11.584515

    The body of an animal determines how the nervous system produces behavior. Therefore, detailed modeling of the neural control of sensorimotor behavior requires a detailed model of the body. Here we contribute an anatomically-detailed biomechanical whole-body model of the fruit fly Drosophila melanogaster in the MuJoCo physics engine. Our model is general-purpose, enabling the simulation of diverse fly behaviors, both on land and in the air. We demonstrate the generality of our model by simulating realistic locomotion, both flight and walking. To support these behaviors, we have extended MuJoCo with phenomenological models of fluid forces and adhesion forces. Through data-driven end-to-end reinforcement learning, we demonstrate that these advances enable the training of neural network controllers capable of realistic locomotion along complex trajectories based on high-level steering control signals. With a visually guided flight task, we demonstrate a neural controller that can use the vision sensors of the body model to control and steer flight. Our project is an open-source platform for modeling neural control of sensorimotor behavior in an embodied context.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    02/26/24 | Nested neural circuits generate distinct acoustic signals during Drosophila courtship
    Joshua L. Lillvis , Kaiyu Wang , Hiroshi M. Shiozaki , Min Xu , David L. Stern , Barry J. Dickson
    Current Biology. 2024 Feb 26;34(4):808-24. doi: 10.1016/j.cub.2024.01.015

    Many motor control systems generate multiple movements using a common set of muscles. How are premotor circuits able to flexibly generate diverse movement patterns? Here, we characterize the neuronal circuits that drive the distinct courtship songs of Drosophila melanogaster. Male flies vibrate their wings towards females to produce two different song modes – pulse and sine song – which signal species identity and male quality. Using cell-type specific genetic reagents and the connectome, we provide a cellular and synaptic map of the circuits in the male ventral nerve cord that generate these songs and examine how activating or inhibiting each cell type within these circuits affects the song. Our data reveal that the song circuit is organized into two nested feed-forward pathways, with extensive reciprocal and feed-back connections. The larger network produces pulse song, the more complex and ancestral song form. A subset of this network produces sine song, the simpler and more recent form. Such nested organization may be a common feature of motor control circuits in which evolution has layered increasing flexibility on to a basic movement pattern.

    View Publication Page
    01/05/24 | Homeodomain proteins hierarchically specify neuronal diversity and synaptic connectivity
    Chundi Xu , Tyler B. Ramos , Ed M. Rogers , Michael B. Reiser , Chris Q. Doe
    eLife. 2024 Jan 05:. doi: 10.7554/eLife.90133

    The brain generates diverse neuron types which express unique homeodomain transcription factors (TFs) and assemble into precise neural circuits. Yet a mechanistic framework is lacking for how homeodomain TFs specify both neuronal fate and synaptic connectivity. We use Drosophila lamina neurons (L1-L5) to show the homeodomain TF Brain-specific homeobox (Bsh) is initiated in lamina precursor cells (LPCs) where it specifies L4/L5 fate and suppresses homeodomain TF Zfh1 to prevent L1/L3 fate. Subsequently, Bsh activates the homeodomain TF Apterous (Ap) in L4 in a feedforward loop to express the synapse recognition molecule DIP-β, in part by Bsh direct binding a DIP-β intron. Thus, homeodomain TFs function hierarchically: primary homeodomain TF (Bsh) first specifies neuronal fate, and subsequently acts with secondary homeodomain TF (Ap) to activate DIP-β, thereby generating precise synaptic connectivity. We speculate that hierarchical homeodomain TF function may represent a general principle for coordinating neuronal fate specification and circuit assembly.

    View Publication Page