Filter
Associated Lab
- Branson Lab (1) Apply Branson Lab filter
- Dudman Lab (2) Apply Dudman Lab filter
- Harris Lab (4) Apply Harris Lab filter
- Lee (Albert) Lab (2) Apply Lee (Albert) Lab filter
- Remove Pachitariu Lab filter Pachitariu Lab
- Romani Lab (1) Apply Romani Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Stringer Lab (19) Apply Stringer Lab filter
- Svoboda Lab (2) Apply Svoboda Lab filter
- Turaga Lab (1) Apply Turaga Lab filter
Associated Support Team
36 Janelia Publications
Showing 11-20 of 36 resultsAs we move through the world, we see the same visual scenes from different perspectives. Although we experience perspective deformations, our perception of a scene remains stable. This raises the question of which neuronal representations in visual brain areas are perspective-tuned and which are invariant. Focusing on planar rotations, we introduce a mathematical framework based on the principle of equivariance, which asserts that an image rotation results in a corresponding rotation of neuronal representations, to explain how the same representation can range from being fully tuned to fully invariant. We applied this framework to large-scale simultaneous neuronal recordings from four visual cortical areas in mice, where we found that representations are both tuned and invariant but become more invariant across higher-order areas. While common deep convolutional neural networks show similar trends in orientation-invariance across layers, they are not rotation-equivariant. We propose that equivariance is a prevalent computation of populations of biological neurons to gradually achieve invariance through structured tuning.
Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, made complicated by the nonstationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To address the spike-sorting problem, we have been openly developing the Kilosort framework. Here we describe the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a version with substantially improved performance due to clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework that uses densely sampled electrical fields from real experiments to generate nonstationary spike waveforms and realistic noise. We found that nearly all versions of Kilosort outperformed other algorithms on a variety of simulated conditions and that Kilosort4 performed best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.
In a recent publication, Ma et al [1] claim that a transformer-based cellular segmentation method called Mediar [2] — which won a Neurips challenge — outperforms Cellpose [3] (0.897 vs 0.543 median F1 score). Here we show that this result was obtained by artificially impairing Cellpose in multiple ways. When we removed these impairments, Cellpose outperformed Mediar (0.861 vs 0.826 median F1 score on the updated test set). To further investigate the performance of transformers for cellular segmentation, we replaced the Cellpose backbone with a transformer. The transformer-Cellpose model also did not outperform the standard Cellpose (0.848 median F1 test score). Our results suggest that transformers do not advance the state-of-the-art in cellular segmentation.
Artificial activation of anatomically localized, genetically defined hypothalamic neuron populations is known to trigger distinct innate behaviors, suggesting a hypothalamic nucleus-centered organization of behavior control. To assess whether the encoding of behavior is similarly anatomically confined, we performed simultaneous neuron recordings across twenty hypothalamic regions in freely moving animals. Here we show that distinct but anatomically distributed neuron ensembles encode the social and fear behavior classes, primarily through mixed selectivity. While behavior class-encoding ensembles were spatially distributed, individual ensembles exhibited strong localization bias. Encoding models identified that behavior actions, but not motion-related variables, explained a large fraction of hypothalamic neuron activity variance. These results identify unexpected complexity in the hypothalamic encoding of instincts and provide a foundation for understanding the role of distributed neural representations in the expression of behaviors driven by hardwired circuits.
Survival behaviors are orchestrated by hardwired circuits located in deep subcortical brain regions, most prominently the hypothalamus. Artificial activation of spatially localized, genetically defined hypothalamic cell populations is known to trigger distinct behaviors, suggesting a nucleus-centered organization of behavioral control. However, no study has investigated the hypothalamic representation of innate behaviors using unbiased, large-scale single neuron recordings. Here, using custom silicon probes, we performed recordings across the rostro-caudal extent of the medial hypothalamus in freely moving animals engaged in a diverse array of social and predator defense (“fear”) behaviors. Nucleus-averaged activity revealed spatially distributed generic “ignition signals” that occurred at the onset of each behavior, and did not identify sparse, nucleus-specific behavioral representations. Single-unit analysis revealed that social and fear behavior classes are encoded by activity in distinct sets of spatially distributed neuronal ensembles spanning the entire hypothalamic rostro-caudal axis. Individual ensemble membership, however, was drawn from neurons in 3-4 adjacent nuclei. Mixed selectivity was identified as the most prevalent mode of behavior representation by individual hypothalamic neurons. Encoding models indicated that a significant fraction of the variance in single neuron activity is explained by behavior. This work reveals that innate behaviors are encoded in the hypothalamus by activity in spatially distributed neural ensembles that each span multiple neighboring nuclei, complementing the prevailing view of hypothalamic behavioral control by single nucleus-restricted cell types derived from perturbational studies.
Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracking algorithm and a deep neural network encoder for predicting neural activity. We used the Facemap keypoints as input for the deep neural network to predict the activity of ∼50,000 simultaneously-recorded neurons and in visual cortex we doubled the amount of explained variance compared to previous methods. Our keypoint tracking algorithm was more accurate than existing pose estimation tools, while the inference speed was several times faster, making it a powerful tool for closed-loop behavioral experiments. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used Facemap to find that the neuronal activity clusters which were highly driven by behaviors were more spatially spread-out across cortex. We also found that the deep keypoint features inferred by the model had time-asymmetrical state dynamics that were not apparent in the raw keypoint data. In summary, Facemap provides a stepping stone towards understanding the function of the brainwide neural signals and their relation to behavior.
Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, complicated by the non-stationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To solve the spike sorting problem, we have continuously developed over the past eight years a framework known as Kilosort. This paper describes the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a new version with substantially improved performance due to new clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework which uses densely sampled electrical fields from real experiments to generate non-stationary spike waveforms and realistic noise. We find that nearly all versions of Kilosort outperform other algorithms on a variety of simulated conditions, and Kilosort4 performs best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.
Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.
Brains must represent the outside world so that animals survive and thrive. In early sensory systems, neural populations have diverse receptive fields structured to detect important features in inputs, yet significant variability has been ignored in classical models of sensory neurons. We model neuronal receptive fields as random, variable samples from parameterized distributions and demonstrate this model in two sensory modalities using data from insect mechanosensors and mammalian primary visual cortex. Our approach leads to a significant theoretical connection between the foundational concepts of receptive fields and random features, a leading theory for understanding artificial neural networks. The modeled neurons perform a randomized wavelet transform on inputs, which removes high frequency noise and boosts the signal. Further, these random feature neurons enable learning from fewer training samples and with smaller networks in artificial tasks. This structured random model of receptive fields provides a unifying, mathematically tractable framework to understand sensory encodings across both spatial and temporal domains.
Brains must represent the outside world so that animals survive and thrive. In early sensory systems, neural populations have diverse receptive fields structured to detect important features in inputs, yet significant variability has been ignored in classical models of sensory neurons. We model neuronal receptive fields as random, variable samples from parametrized distributions in two sensory modalities, using data from insect mechanosensors and neurons of mammalian primary visual cortex. We show that these random feature neurons perform a randomized wavelet transform on inputs which removes high frequency noise and boosts the signal. Our result makes a significant theoretical connection between the foundational concepts of receptive fields in neuroscience and random features in artificial neural networks. Further, these random feature neurons enable learning from fewer training samples and with smaller networks in artificial tasks. This structured random model of receptive fields provides a unifying, mathematically tractable framework to understand sensory encodings across both spatial and temporal domains.