Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

194 Janelia Publications

Showing 1-10 of 194 results
Your Criteria:
    12/30/16 | Live cell single molecule-guided Bayesian localization super resolution microscopy.
    Xu F, Zhang M, He W, Han R, Xue F, Liu Z, Zhang F, Lippincott-Schwartz J, Xu P
    Cell Research. 2016 Dec 30:. doi: 10.1038/cr.2015.160
    12/28/16 | Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs.
    Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM
    eLife. 2016 Dec 28;5:. doi: 10.7554/eLife.21022

    Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors.

    View Publication Page
    12/23/16 | Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy.
    Hanslovsky P, Bogovic JA, Saalfeld S
    Bioinformatics (Oxford, England). 2016 Dec 23:. doi: 10.1093/bioinformatics/btw794

    MOTIVATION: Serial section microscopy is an established method for detailed anatomy reconstruction of biological specimen. During the last decade, high resolution electron microscopy (EM) of serial sections has become the de-facto standard for reconstruction of neural connectivity at ever increasing scales (EM connectomics). In serial section microscopy, the axial dimension of the volume is sampled by physically removing thin sections from the embedded specimen and subsequently imaging either the block-face or the section series. This process has limited precision leading to inhomogeneous non-planar sampling of the axial dimension of the volume which, in turn, results in distorted image volumes. This includes that section series may be collected and imaged in unknown order.

    RESULTS: We developed methods to identify and correct these distortions through image-based signal analysis without any additional physical apparatus or measurements. We demonstrate the efficacy of our methods in proof of principle experiments and application to real world problems.

    AVAILABILITY AND IMPLEMENTATION: We made our work available as libraries for the ImageJ distribution Fiji and for deployment in a high performance parallel computing environment. Our sources are open and available at, and CONTACT: : saalfelds@janelia.hhmi.orgSupplementary information: Supplementary data are available at Bioinformatics online.

    View Publication Page
    12/18/16 | Developmentally programmed germ cell remodelling by endodermal cell cannibalism.
    Abdu Y, Maniscalco C, Heddleston JM, Chew T, Nance J
    Nature Cell Biology. 2016 Dec;18(12):1302-10. doi: 10.1038/ncb3439

    Primordial germ cells (PGCs) in many species associate intimately with endodermal cells, but the significance of such interactions is largely unexplored. Here, we show that Caenorhabditis elegans PGCs form lobes that are removed and digested by endodermal cells, dramatically altering PGC size and mitochondrial content. We demonstrate that endodermal cells do not scavenge lobes PGCs shed, but rather, actively remove lobes from the cell body. CED-10 (Rac)-induced actin, DYN-1 (dynamin) and LST-4 (SNX9) transiently surround lobe necks and are required within endodermal cells for lobe scission, suggesting that scission occurs through a mechanism resembling vesicle endocytosis. These findings reveal an unexpected role for endoderm in altering the contents of embryonic PGCs, and define a form of developmentally programmed cell remodelling involving intercellular cannibalism. Active roles for engulfing cells have been proposed in several neuronal remodelling events, suggesting that intercellular cannibalism may be a more widespread method used to shape cells than previously thought.

    View Publication Page
    12/16/16 | The Multilayer Connectome of Caenorhabditis elegans.
    Bentley B, Branicky R, Barnes CL, Chew YL, Yemini E, Bullmore ET, Vértes PE, Schafer WR
    PLoS Computational Biology. 2016 Dec 16;12(12):e1005283. doi: 10.1371/journal.pcbi.1005283

    Connectomics has focused primarily on the mapping of synaptic links in the brain; yet it is well established that extrasynaptic volume transmission, especially via monoamines and neuropeptides, is also critical to brain function and occurs primarily outside the synaptic connectome. We have mapped the putative monoamine connections, as well as a subset of neuropeptide connections, in C. elegans based on new and published gene expression data. The monoamine and neuropeptide networks exhibit distinct topological properties, with the monoamine network displaying a highly disassortative star-like structure with a rich-club of interconnected broadcasting hubs, and the neuropeptide network showing a more recurrent, highly clustered topology. Despite the low degree of overlap between the extrasynaptic (or wireless) and synaptic (or wired) connectomes, we find highly significant multilink motifs of interaction, pinpointing locations in the network where aminergic and neuropeptide signalling modulate synaptic activity. Thus, the C. elegans connectome can be mapped as a multiplex network with synaptic, gap junction, and neuromodulator layers representing alternative modes of interaction between neurons. This provides a new topological plan for understanding how aminergic and peptidergic modulation of behaviour is achieved by specific motifs and loci of integration between hard-wired synaptic or junctional circuits and extrasynaptic signals wirelessly broadcast from a small number of modulatory neurons.

    View Publication Page
    12/14/16 | Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.
    Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NC
    Nature. 2016 Dec 14:. doi: 10.1038/nature20576

    The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.

    View Publication Page
    12/14/16 | The nanoscale spatial organization of B cell receptors on IgM- and IgG-expressing human B cells.
    Lee J, Sengupta P, Brzostowski J, Lippincott-Schwartz J, Pierce SK
    Molecular Biology of the Cell. 2016 Dec 14;28(4):511-23. doi: 10.1091/mbc.E16-06-0452

    B cell activation is initiated by the binding of antigen to the B cell receptor (BCR). Here we used dSTORM super resolution imaging to characterize the nanoscale spatial organization of IgM and IgG BCRs on the surfaces of resting and antigen-activated human peripheral blood B cells. We provide insights into both the fundamental process of antigen-driven BCR clustering as well as differences in the spatial organization of IgM and IgG BCRs that may contribute to the characteristic differences in the responses of naïve and memory B cells to antigen. We provide evidence that although both IgM and IgG BCRs reside in highly heterogeneous protein islands that vary in both size and number of BCR single molecule localizations, both resting and activated B cells intrinsically maintain a high frequency of single isolated BCR localizations, which likely represent BCR monomers. IgG BCRs are more clustered than IgM BCRs on resting cells and form larger protein islands following antigen activation. Small dense BCR clusters likely formed via protein-protein interactions are present on the surface of resting cells and antigen activation induces these to come together to form less dense, larger islands, a process likely governed, at least in part, by protein-lipid interactions.

    View Publication Page
    12/13/16 | A plasma membrane template for macropinocytic cups.
    Veltman DM, Williams TD, Bloomfield G, Chen B, Betzig E, Insall RH, Kay RR
    eLife. 2016 Dec 13;5:. doi: 10.7554/eLife.20085

    Macropinocytosis is a fundamental mechanism that allows cells to take up extracellular liquid into large vesicles. It critically depends on the formation of a ring of protrusive actin beneath the plasma membrane, which develops into the macropinocytic cup. We show that macropinocytic cups in Dictyostelium are organised around coincident intense patches of PIP3, active Ras and active Rac. These signalling patches are invariably associated with a ring of active SCAR/WAVE at their periphery, as are all examined structures based on PIP3 patches, including phagocytic cups and basal waves. Patch formation does not depend on the enclosing F-actin ring, and patches become enlarged when the RasGAP NF1 is mutated, showing that Ras plays an instructive role. New macropinocytic cups predominantly form by splitting from existing ones. We propose that cup-shaped plasma membrane structures form from self-organizing patches of active Ras/PIP3, which recruit a ring of actin nucleators to their periphery.

    View Publication Page
    12/13/16 | An empirical analysis of deep network loss surfaces.
    Im DJ, Tao M, Branson K
    arXiv. 2016 Dec 13:arXiv:1612.04010

    The training of deep neural networks is a high-dimension optimization problem with respect to the loss function of a model. Unfortunately, these functions are of high dimension and non-convex and hence difficult to characterize. In this paper, we empirically investigate the geometry of the loss functions for state-of-the-art networks with multiple stochastic optimization methods. We do this through several experiments that are visualized on polygons to understand how and when these stochastic optimization methods find minima.

    View Publication Page
    12/09/16 | Structure of the transporter associated with antigen processing trapped by herpes simplex virus.
    Oldham ML, Grigorieff N, Chen J
    eLife. 2016 Dec 09;5:. doi: 10.7554/eLife.21829

    The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process.

    View Publication Page