Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

1 Janelia Publications

Showing 1-1 of 1 results
Your Criteria:
    09/14/17 | Pleiotropy in enhancer function is encoded through diverse genetic architectures.
    Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, Frankel N
    bioRxiv. 2017 Sep 14:. doi: 10.1101/188532

    Developmental genes can have complex cis-regulatory regions, with multiple enhancers scattered across stretches of DNA spanning tens or hundreds of kilobases. Early work revealed remarkable modularity of enhancers, where distinct regions of DNA, bound by combinations of transcription factors, drive gene expression in defined spatio-temporal domains. Nevertheless, a few reports have shown that enhancer function may be required in multiple developmental stages, implying that regulatory elements can be pleiotropic. In these cases, it is not clear whether the pleiotropic enhancers employ the same transcription factor binding sites to drive expression at multiple developmental stages or whether enhancers function as chromatin scaffolds, where independent sets of transcription factor binding sites act at different stages. In this work we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive gene expression in multiple tissues and developmental stages at varying levels of redundancy. We have explored how this pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, whereas for a second enhancer, these roles are largely encoded by distinct transcription factor binding sites. Our data suggest that enhancer pleiotropy might be a common feature of cis-regulatory regions of developmental genes and that this pleiotropy can be encoded through multiple genetic architectures.

    View Publication Page