Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2 Janelia Publications

Showing 1-2 of 2 results
Your Criteria:
    08/03/17 | Multi-scale approaches for high-speed imaging and analysis of large neural populations.
    Friedrich J, Yang W, Soudry D, Mu Y, Ahrens MB, Yuste R, Peterka DS, Paninski L
    PLoS Computational Biology. 2017 Aug 03;13(8):e1005685. doi: 10.1371/journal.pcbi.1005685

    Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to "zoom out" by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.

    View Publication Page
    07/31/17 | The role of the serotonergic system in motor control.
    Kawashima T
    Neuroscience Research. 2018 Apr;129:32-9. doi: 10.1016/j.neures.2017.07.005

    The serotonergic system in the vertebrate brain is implicated in various behaviors and diseases. Its involvement in motor control has been studied for over half a century, but efforts to build a unified model of its functions have been hampered due to the complexity of serotonergic neuromodulation. This review summarizes the anatomical structure of the serotonergic system, its afferent and efferent connections to other brain regions, and recent insights into the sensorimotor computations in the serotonergic system, and considers future research directions into the roles of serotonergic system in motor control.

    View Publication Page