Filter
Associated Lab
Associated Support Team
4 Janelia Publications
Showing 1-4 of 4 resultsIn their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.
The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a "decommissioning" phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the Mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages.
Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.
A complex brain consists of multiple intricate neural networks assembled from distinct sets of input and output neurons as well as region-specific local interneurons. Within a given anatomical set, there exist diverse neuronal types that can vary in morphology, neural physiology, and modes of neurotransmission. The genetic programs that guide specification of neuronal types during neurogenesis preconfigure the brain. This is best demonstrated in the Drosophila central brain, which is composed of ∼100 pairs of individually tailored neuronal lineages. Each neuronal lineage (the neurons/glia produced from a single stem cell) can contain multiple morphological classes of neurons that can consist of many analogous neuronal types. The detailed patterns of neuronal diversification are lineage-specific and can differ drastically even among neighboring neuronal lineages. Furthermore, the interrelationships between neuronal lineages and neural networks are complex. These phenomena underscore the importance of tracking all neuronal lineages in understanding brain development and evolution.