Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

187 Janelia Publications

Showing 31-40 of 187 results
Your Criteria:
    10/11/17 | Nanoscale visualization of biomineral formation in coral proto-polyps.
    Mass T, Drake JL, Heddleston JM, Falkowski PG
    Current Biology : CB. 2017 Oct 11;27(20):3191-6. doi: 10.1016/j.cub.2017.09.012

    Calcium carbonate platforms produced by reef-building stony corals over geologic time are pervasive features around the world [1]; however, the mechanism by which these organisms produce the mineral is poorly understood (see review by [2]). It is generally assumed that stony corals precipitate calcium carbonate extracellularly as aragonite in a calcifying medium between the calicoblastic ectoderm and pre-existing skeleton, separated from the overlying seawater [2]. The calicoblastic ectoderm produces extracellular matrix (ECM) proteins, secreted to the calcifying medium [3-6], which appear to provide the nucleation, alteration, elongation, and inhibition mechanisms of the biomineral [7] and remain occluded and preserved in the skeleton [8-10]. Here we show in cell cultures of the stony coral Stylophora pistillata that calcium is concentrated in intracellular pockets that are subsequently exported from the cell where a nucleation process leads to the formation of extracellular aragonite crystals. Analysis of the growing crystals by lattice light-sheet microscopy suggests that the crystals elongate from the cells' surfaces outward.

    View Publication Page
    03/13/18 | Genetic reagents for making split-GAL4 lines in Drosophila.
    Dionne H, Hibbard KL, Cavallaro A, Kao J, Rubin GM
    Genetics . 2018 March;209(1):31-5. doi: 10.1101/197509

    The ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2,800 transgenic lines for use with the split-GAL4 intersectional method.

    View Publication Page
    Wu Lab
    10/01/17 | Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres.
    Xiao H, Wang F, Wisniewski J, Shaytan AK, Ghirlando R, Fitzgerald PC, Huang Y, Wei D, Li S, Landsman D, Panchenko AR, Wu C
    Genes & Development. 2017 Oct 01;31(19):1958-1972. doi: 10.1101/gad.304782.117

    Histone CENP-A-containing nucleosomes play an important role in nucleating kinetochores at centromeres for chromosome segregation. However, the molecular mechanisms by which CENP-A nucleosomes engage with kinetochore proteins are not well understood. Here, we report the finding of a new function for the budding yeast Cse4/CENP-A histone-fold domain interacting with inner kinetochore protein Mif2/CENP-C. Strikingly, we also discovered that AT-rich centromere DNA has an important role for Mif2 recruitment. Mif2 contacts one side of the nucleosome dyad, engaging with both Cse4 residues and AT-rich nucleosomal DNA. Both interactions are directed by a contiguous DNA- and histone-binding domain (DHBD) harboring the conserved CENP-C motif, an AT hook, and RK clusters (clusters enriched for arginine-lysine residues). Human CENP-C has two related DHBDs that bind preferentially to DNA sequences of higher AT content. Our findings suggest that a DNA composition-based mechanism together with residues characteristic for the CENP-A histone variant contribute to the specification of centromere identity.

    View Publication Page
    09/26/17 | Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes.
    Fritz-Laylin LK, Riel-Mehan M, Chen B, Lord SJ, Goddard TD, Ferrin TE, Nicholson-Dykstra SM, Higgs H, Johnson GT, Betzig E, Mullins RD
    eLife. 2017 Sep 26;6:. doi: 10.7554/eLife.26990

    Leukocytes and other amoeboid cells change shape as they move, forming highly dynamic, actin-filled pseudopods. Although we understand much about the architecture and dynamics of thin lamellipodia made by slow-moving cells on flat surfaces, conventional light microscopy lacks the spatial and temporal resolution required to track complex pseudopods of cells moving in three dimensions. We therefore employed lattice light sheet microscopy to perform three-dimensional, time-lapse imaging of neutrophil-like HL-60 cells crawling through collagen matrices. To analyze three-dimensional pseudopods we: (i) developed fluorescent probe combinations that distinguish cortical actin from dynamic, pseudopod-forming actin networks, and (ii) adapted molecular visualization tools from structural biology to render and analyze complex cell surfaces. Surprisingly, three-dimensional pseudopods turn out to be composed of thin (<0.75 µm), flat sheets that sometimes interleave to form rosettes. Their laminar nature is not templated by an external surface, but likely reflects a linear arrangement of regulatory molecules. Although we find that Arp2/3-dependent pseudopods are dispensable for three-dimensional locomotion, their elimination dramatically decreases the frequency of cell turning, and pseudopod dynamics increase when cells change direction, highlighting the important role pseudopods play in pathfinding.

    View Publication Page
    09/25/17 | Cell volume change through water efflux impacts cell stiffness and stem cell fate.
    Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR, Han Y, Burnette DT, Jensen MH, Kasza KE, Moore JR, Mackintosh FC, Fredberg JJ, Mooney DJ, Lippincott-Schwartz J, Weitz DA
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Sep 25;114(41):E8618-27. doi: 10.1073/pnas.1705179114

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology.

    View Publication Page
    09/21/17 | Genomic probes.
    Singer RH, Deng W, Lionnet T
    USPTO. 2017 Sep 21;A1:

    Labeled probes, and methods of use thereof, comprise a Cas polypeptide conjugated to gRNA that is specific for target nucleic acid sequences, including genomic DNA sequences. The probes and methods can be used to label nucleic acid sequences without global DNA denaturation. The presently-disclosed subject matter meets some or all of the above identified needs, as will become evident to those of ordinary skill in the art after a study of information provided in this document.

    View Publication Page
    09/19/17 | Cohesin can remain associated with chromosomes during DNA replication.
    Rhodes JD, Haarhuis JH, Grimm JB, Rowland BD, Lavis LD, Nasmyth KA
    Cell Reports. 2017 Sep 19;20(12):2749-55. doi: 10.1016/j.celrep.2017.08.092

    To ensure disjunction to opposite poles during anaphase, sister chromatids must be held together following DNA replication. This is mediated by cohesin, which is thought to entrap sister DNAs inside a tripartite ring composed of its Smc and kleisin (Scc1) subunits. How such structures are created during S phase is poorly understood, in particular whether they are derived from complexes that had entrapped DNAs prior to replication. To address this, we used selective photobleaching to determine whether cohesin associated with chromatin in G1 persists in situ after replication. We developed a non-fluorescent HaloTag ligand to discriminate the fluorescence recovery signal from labeling of newly synthesized Halo-tagged Scc1 protein (pulse-chase or pcFRAP). In cells where cohesin turnover is inactivated by deletion of WAPL, Scc1 can remain associated with chromatin throughout S phase. These findings suggest that cohesion might be generated by cohesin that is already bound to un-replicated DNA.

    View Publication Page
    09/19/17 | Synthesis of Janelia Fluor HaloTag and SNAP-Tag Ligands and Their Use in Cellular Imaging Experiments.
    Grimm JB, Brown TA, English BP, Lionnet T, Lavis LD
    Methods in Molecular Biology (Clifton, N.J.). 2017;1663:179-188. doi: 10.1007/978-1-4939-7265-4_15

    The development of genetically encoded self-labeling protein tags such as the HaloTag and SNAP-tag has expanded the utility of chemical dyes in microscopy. Intracellular labeling using these systems requires small, cell-permeable dyes with high brightness and photostability. We recently discovered a general method to improve the properties of classic fluorophores by replacing N,N-dimethylamino groups with four-membered azetidine rings to create the "Janelia Fluor" dyes. Here, we describe the synthesis of the HaloTag and SNAP-tag ligands of Janelia Fluor 549 and Janelia Fluor 646 as well as standard labeling protocols for use in ensemble and single-molecule cellular imaging.

    View Publication Page
    09/14/17 | Pleiotropy in enhancer function is encoded through diverse genetic architectures.
    Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, Frankel N
    bioRxiv. 2017 Sep 14:. doi: 10.1101/188532

    Developmental genes can have complex cis-regulatory regions, with multiple enhancers scattered across stretches of DNA spanning tens or hundreds of kilobases. Early work revealed remarkable modularity of enhancers, where distinct regions of DNA, bound by combinations of transcription factors, drive gene expression in defined spatio-temporal domains. Nevertheless, a few reports have shown that enhancer function may be required in multiple developmental stages, implying that regulatory elements can be pleiotropic. In these cases, it is not clear whether the pleiotropic enhancers employ the same transcription factor binding sites to drive expression at multiple developmental stages or whether enhancers function as chromatin scaffolds, where independent sets of transcription factor binding sites act at different stages. In this work we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive gene expression in multiple tissues and developmental stages at varying levels of redundancy. We have explored how this pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, whereas for a second enhancer, these roles are largely encoded by distinct transcription factor binding sites. Our data suggest that enhancer pleiotropy might be a common feature of cis-regulatory regions of developmental genes and that this pleiotropy can be encoded through multiple genetic architectures.

    View Publication Page
    09/14/17 | Q&A: The brain under a mesoscope: the forest and the trees.
    Sofroniew NJ
    BMC Biology. 2017 Sep 14;15(1):82. doi: 10.1186/s12915-017-0426-y

    Neurons relevant to a particular behavior are often widely dispersed across the brain. To record activity in groups of individual neurons that might be distributed across large distances, neuroscientists and optical engineers have been developing a new type of microscope called a mesoscope. Mesoscopes have high spatial resolution and a large field of view. This Q&A will discuss this exciting new technology, highlighting a particular instrument, the two-photon random access mesoscope (2pRAM).

    View Publication Page