Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block

Associated Support Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

4 Janelia Publications

Showing 1-4 of 4 results
Your Criteria:
    10/15/19 | Developmental organization of central neurons in the adult Drosophila ventral nervous system.
    Shepherd D, Sahota V, Court R, Williams DW, Truman JW
    Journal of Comparative Neurology. 2019 Oct 15;527(15):2573-2598. doi: 10.1002/cne.24690

    We have used MARCM to reveal the adult morphology of the post embryonically produced neurons in the thoracic neuromeres of the Drosophila VNS. The work builds on previous studies of the origins of the adult VNS neurons to describe the clonal organization of the adult VNS. We present data for 58 of 66 postembryonic thoracic lineages, excluding the motor neuron producing lineages (15 and 24) which have been described elsewhere. MARCM labels entire lineages but where both A and B hemilineages survive (e.g., lineages 19, 12, 13, 6, 1, 3, 8, and 11), the two hemilineages can be discriminated and we have described each hemilineage separately. Hemilineage morphology is described in relation to the known functional domains of the VNS neuropil and based on the anatomy we are able to assign broad functional roles for each hemilineage. The data show that in a thoracic hemineuromere, 16 hemilineages are primarily involved in controlling leg movements and walking, 9 are involved in the control of wing movements, and 10 interface between both leg and wing control. The data provide a baseline of understanding of the functional organization of the adult Drosophila VNS. By understanding the morphological organization of these neurons, we can begin to define and test the rules by which neuronal circuits are assembled during development and understand the functional logic and evolution of neuronal networks.

    View Publication Page
    Truman LabCardona Lab
    06/14/19 | Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae.
    Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, Nose A
    Nature Communications. 2019 Jun 14;10(1):2654. doi: 10.1038/s41467-019-10695-y

    Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system.

    View Publication Page
    03/26/19 | Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS.
    Lacin H, Chen H, Long X, Singer RH, Lee T, Truman JW
    Elife. 2019 Mar 26;8:. doi: 10.7554/eLife.43701

    The vast majority of the adult fly ventral nerve cord is composed of 34 hemilineages, which are clusters of lineally related neurons. Neurons in these hemilineages use one of the three fast-acting neurotransmitters (acetylcholine, GABA, or glutamate) for communication. We generated a comprehensive neurotransmitter usage map for the entire ventral nerve cord. We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated. Importantly, our work uncovered a simple rule: All neurons within a hemilineage use the same neurotransmitter. Thus, neurotransmitter identity is acquired at the stem cell level. Our detailed transmitter- usage/lineage identity map will be a great resource for studying the developmental basis of behavior and deciphering how neuronal circuits function to regulate behavior.

    View Publication Page
    Cardona LabTruman LabZlatic Lab
    01/29/19 | Neural substrates of Drosophila larval anemotaxis.
    Jovanic T, Winding M, Cardona A, Truman JW, Gershow M, Zlatic M
    Current Biology : CB. 2019 Jan 29;29(4):554-66. doi: 10.1016/j.cub.2019.01.009

    Animals use sensory information to move toward more favorable conditions. Drosophila larvae can move up or down gradients of odors (chemotax), light (phototax), and temperature (thermotax) by modulating the probability, direction, and size of turns based on sensory input. Whether larvae can anemotax in gradients of mechanosensory cues is unknown. Further, although many of the sensory neurons that mediate taxis have been described, the central circuits are not well understood. Here, we used high-throughput, quantitative behavioral assays to demonstrate Drosophila larvae anemotax in gradients of wind speeds and to characterize the behavioral strategies involved. We found that larvae modulate the probability, direction, and size of turns to move away from higher wind speeds. This suggests that similar central decision-making mechanisms underlie taxis in somatosensory and other sensory modalities. By silencing the activity of single or very few neuron types in a behavioral screen, we found two sensory (chordotonal and multidendritic class III) and six nerve cord neuron types involved in anemotaxis. We reconstructed the identified neurons in an electron microscopy volume that spans the entire larval nervous system and found they received direct input from the mechanosensory neurons or from each other. In this way, we identified local interneurons and first- and second-order subesophageal zone (SEZ) and brain projection neurons. Finally, silencing a dopaminergic brain neuron type impairs anemotaxis. These findings suggest that anemotaxis involves both nerve cord and brain circuits. The candidate neurons and circuitry identified in our study provide a basis for future detailed mechanistic understanding of the circuit principles of anemotaxis.

    View Publication Page