Filter
Associated Lab
- Ahrens Lab (2) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (2) Apply Betzig Lab filter
- Beyene Lab (1) Apply Beyene Lab filter
- Branson Lab (2) Apply Branson Lab filter
- Card Lab (1) Apply Card Lab filter
- Cardona Lab (5) Apply Cardona Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Dickson Lab (2) Apply Dickson Lab filter
- Dudman Lab (2) Apply Dudman Lab filter
- Espinosa Medina Lab (2) Apply Espinosa Medina Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Funke Lab (3) Apply Funke Lab filter
- Harris Lab (2) Apply Harris Lab filter
- Heberlein Lab (1) Apply Heberlein Lab filter
- Hermundstad Lab (3) Apply Hermundstad Lab filter
- Hess Lab (5) Apply Hess Lab filter
- Jayaraman Lab (1) Apply Jayaraman Lab filter
- Karpova Lab (1) Apply Karpova Lab filter
- Keller Lab (2) Apply Keller Lab filter
- Lavis Lab (10) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Lippincott-Schwartz Lab (14) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (6) Apply Liu (Zhe) Lab filter
- Looger Lab (11) Apply Looger Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Pachitariu Lab (6) Apply Pachitariu Lab filter
- Podgorski Lab (1) Apply Podgorski Lab filter
- Reiser Lab (3) Apply Reiser Lab filter
- Romani Lab (4) Apply Romani Lab filter
- Rubin Lab (4) Apply Rubin Lab filter
- Saalfeld Lab (4) Apply Saalfeld Lab filter
- Scheffer Lab (2) Apply Scheffer Lab filter
- Schreiter Lab (1) Apply Schreiter Lab filter
- Spruston Lab (3) Apply Spruston Lab filter
- Stern Lab (5) Apply Stern Lab filter
- Sternson Lab (3) Apply Sternson Lab filter
- Stringer Lab (2) Apply Stringer Lab filter
- Svoboda Lab (7) Apply Svoboda Lab filter
- Tebo Lab (1) Apply Tebo Lab filter
- Tervo Lab (1) Apply Tervo Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Truman Lab (3) Apply Truman Lab filter
- Turaga Lab (12) Apply Turaga Lab filter
- Turner Lab (1) Apply Turner Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
Associated Project Team
Associated Support Team
- Cryo-Electron Microscopy (3) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (1) Apply Electron Microscopy filter
- Integrative Imaging (2) Apply Integrative Imaging filter
- Invertebrate Shared Resource (3) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (2) Apply Janelia Experimental Technology filter
- Molecular Genomics (2) Apply Molecular Genomics filter
- Primary & iPS Cell Culture (1) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (3) Apply Project Technical Resources filter
- Quantitative Genomics (1) Apply Quantitative Genomics filter
- Scientific Computing Software (4) Apply Scientific Computing Software filter
- Viral Tools (2) Apply Viral Tools filter
Publication Date
- December 2021 (19) Apply December 2021 filter
- November 2021 (15) Apply November 2021 filter
- October 2021 (12) Apply October 2021 filter
- September 2021 (14) Apply September 2021 filter
- August 2021 (15) Apply August 2021 filter
- July 2021 (17) Apply July 2021 filter
- June 2021 (10) Apply June 2021 filter
- May 2021 (20) Apply May 2021 filter
- April 2021 (20) Apply April 2021 filter
- March 2021 (8) Apply March 2021 filter
- February 2021 (12) Apply February 2021 filter
- January 2021 (13) Apply January 2021 filter
- Remove 2021 filter 2021
175 Janelia Publications
Showing 41-50 of 175 resultsThe small size and translucency of larval zebrafish () have made it a unique experimental system to investigate whole-brain neural circuit structure and function. Still, the connectivity patterns between most neuronal types remain mostly unknown. This gap in knowledge underscores the critical need for effective neural circuit mapping tools, especially ones that can integrate structural and functional analyses. To address this, we previously developed a vesicular stomatitis virus (VSV) based approach called Tracer with Restricted Anterograde Spread (TRAS). TRAS utilizes lentivirus to complement replication-incompetent VSV (VSVΔG) to allow restricted (monosynaptic) anterograde labeling from projection neurons to their target cells in the brain. Here, we report the second generation of TRAS (TRAS-M51R), which utilizes a mutant variant of VSVΔG [VSV(M51R)ΔG] with reduced cytotoxicity. Within the primary visual pathway, we found that TRAS-M51R significantly improved long-term viability of transsynaptic labeling (compared to TRAS) while maintaining anterograde spread activity. By using Cre-expressing VSV(M51R)ΔG, TRAS-M51R could selectively label excitatory ( positive) and inhibitory ( positive) retinorecipient neurons. We further show that these labeled excitatory and inhibitory retinorecipient neurons retained neuronal excitability upon visual stimulation at 5-8 days post fertilization (2-5 days post-infection). Together, these findings show that TRAS-M51R is suitable for neural circuit studies that integrate structural connectivity, cell-type identity, and neurophysiology.
Understanding complex biological systems requires visualizing structures and processes deep within living organisms. We developed a compact adaptive optics module and incorporated it into two- and three-photon fluorescence microscopes, to measure and correct tissue-induced aberrations. We resolved synaptic structures in deep cortical and subcortical areas of the mouse brain, and demonstrated high-resolution imaging of neuronal structures and somatosensory-evoked calcium responses in the mouse spinal cord at unprecedented depths in vivo.
Although most experimentally characterized proteins with similar sequences assume the same folds and perform similar functions, an increasing number of exceptions is emerging. One class of exceptions comprises sequence-similar fold switchers, whose secondary structures shift from α-helix <-> β-sheet through a small number of mutations, a sequence insertion, or a deletion. Predictive methods for identifying sequence-similar fold switchers are desirable because some are associated with disease and/or can perform different functions in cells. Here, we use homology-based secondary structure predictions to identify sequence-similar fold switchers from their amino acid sequences alone. To do this, we predicted the secondary structures of sequence-similar fold switchers using three different homology-based secondary structure predictors: PSIPRED, JPred4, and SPIDER3. We found that α-helix <-> β-strand prediction discrepancies from JPred4 discriminated between the different conformations of sequence-similar fold switchers with high statistical significance (P < 1.8*10 ). Thus, we used these discrepancies as a classifier and found that they can often robustly discriminate between sequence-similar fold switchers and sequence-similar proteins that maintain the same folds (Matthews Correlation Coefficient of 0.82). We found that JPred4 is a more robust predictor of sequence-similar fold switchers because of (a) the curated sequence database it uses to produce multiple sequence alignments and (b) its use of sequence profiles based on Hidden Markov Models. Our results indicate that inconsistencies between JPred4 secondary structure predictions can be used to identify some sequence-similar fold switchers from their sequences alone. Thus, the negative information from inconsistent secondary structure predictions can potentially be leveraged to identify sequence-similar fold switchers from the broad base of genomic sequences.
Extant fold-switching proteins remodel their secondary structures and change their functions in response to cellular stimuli, regulating biological processes and affecting human health. In spite of their biological importance, these proteins remain understudied. Few representative examples of fold switchers are available in the Protein Data Bank, and they are difficult to predict. In fact, all 96 experimentally validated examples of extant fold switchers were stumbled upon by chance. Thus, predictive methods are needed to expedite the process of discovering and characterizing more of these shapeshifting proteins. Previous approaches require a solved structure or all-atom simulations, greatly constraining their use. Here, we propose a high-throughput sequence-based method for predicting extant fold switchers that transition from α-helix in one conformation to β-strand in the other. This method leverages two previous observations: (1) α-helix <-> β-strand prediction discrepancies from JPred4 are a robust predictor of fold switching, and (2) the fold-switching regions (FSRs) of some extant fold switchers have different secondary structure propensities when expressed in isolation (isolated FSRs) than when expressed within the context of their parent protein (contextualized FSRs). Combining these two observations, we ran JPred4 on the sequences of isolated and contextualized FSRs from 14 known extant fold switchers and found α-helix <->β-strand prediction discrepancies in every case. To test the overall robustness of this finding, we randomly selected regions of proteins not expected to switch folds (single-fold proteins) and found significantly fewer α-helix <-> β-strand prediction discrepancies (p < 4.2*10−20, Kolmogorov-Smirnov test). Combining these discrepancies with the overall percentage of predicted secondary structure, we developed a classifier that often robustly identifies extant fold switchers (Matthews Correlation Coefficient of 0.70). Although this classifier had a high false negative rate (6/14), its false positive rate was very low (1/211), suggesting that it can be used to predict a subset of extant fold switchers from billions of available genomic sequences.
Understanding complex biological systems requires visualizing structures and processes deep within living organisms. We developed a compact adaptive optics module and incorporated it into two- and three-photon fluorescence microscopes, to measure and correct tissue-induced aberrations. We resolved synaptic structures in deep cortical and subcortical areas of the mouse brain, and demonstrated high-resolution imaging of neuronal structures and somatosensory-evoked calcium responses in the mouse spinal cord at great depths in vivo.
In April 2020, the QUality Assessment and REProducibility for Instruments and Images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models, and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREP-LiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.
Astrocytes are essential cells of the central nervous system, characterized by dynamic relationships with neurons that range from functional metabolic interactions and regulation of neuronal firing activities, to the release of neurotrophic and neuroprotective factors. In Parkinson’s disease (PD), dopaminergic neurons are progressively lost during the course of the disease, but the effects of PD on astrocytes and astrocyte-to-neuron communication remains largely unknown. This study focuses on the effects of the PD-related mutation LRRK2 G2019S in astrocytes generated from patient-derived induced pluripotent stem cells. We report the alteration of extracellular vesicle (EV) biogenesis in astrocytes, and we identify the abnormal accumulation of key PD-related proteins within multi vesicular bodies (MVBs). We found that dopaminergic neurons internalize astrocyte-secreted EVs and that LRRK2 G2019S EVs are abnormally enriched in neurites and fail to provide full neurotrophic support to dopaminergic neurons. Thus, dysfunctional astrocyte-to-neuron communication via altered EV biological properties may participate in the progression of PD.
Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.
Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.