Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

174 Janelia Publications

Showing 71-80 of 174 results
Your Criteria:
    08/12/21 | The cAMP effector PKA mediates Moody GPCR signaling in blood-brain barrier formation and maturation.
    Li X, Fetter R, Schwabe T, Jung C, Liu L, Steller H, Gaul U
    eLife. 2021 Aug 12;10:. doi: 10.7554/eLife.68275

    The blood-brain barrier (BBB) of is comprised of a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.

    View Publication Page
    08/11/21 | Structured patterns of activity in pulse-coupled oscillator networks with varied connectivity.
    Kadhim KL, Hermundstad AM, Brown KS
    PLoS One. 2021 Aug 11;16(8):e0256034. doi: 10.1371/journal.pone.0256034

    Identifying coordinated activity within complex systems is essential to linking their structure and function. We study collective activity in networks of pulse-coupled oscillators that have variable network connectivity and integrate-and-fire dynamics. Starting from random initial conditions, we see the emergence of three broad classes of behaviors that differ in their collective spiking statistics. In the first class ("temporally-irregular"), all nodes have variable inter-spike intervals, and the resulting firing patterns are irregular. In the second ("temporally-regular"), the network generates a coherent, repeating pattern of activity in which all nodes fire with the same constant inter-spike interval. In the third ("chimeric"), subgroups of coherently-firing nodes coexist with temporally-irregular nodes. Chimera states have previously been observed in networks of oscillators; here, we find that the notions of temporally-regular and chimeric states encompass a much richer set of dynamical patterns than has yet been described. We also find that degree heterogeneity and connection density have a strong effect on the resulting state: in binomial random networks, high degree variance and intermediate connection density tend to produce temporally-irregular dynamics, while low degree variance and high connection density tend to produce temporally-regular dynamics. Chimera states arise with more frequency in networks with intermediate degree variance and either high or low connection densities. Finally, we demonstrate that a normalized compression distance, computed via the Lempel-Ziv complexity of nodal spike trains, can be used to distinguish these three classes of behavior even when the phase relationship between nodes is arbitrary.

    View Publication Page
    08/06/21 | Small-molecule ligands can inhibit −1 programmed ribosomal frameshifting in a broad spectrum of coronaviruses.
    Sneha Munshi , Krishna Neupane , Sandaru M. Ileperuma , Matthew T.J. Halma , Jamie A. Kelly , Clarissa F. Halpern , Jonathan D. Dinman , Sarah Loerch , Michael T. Woodside
    bioRxiv. 2021 Aug 06:. doi: 10.1101/2021.08.06.455424

    Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases since 2000 have high-lighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use −1 programmed ribosomal frameshifting (−1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates −1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored a group of 6 small-molecule ligands, evaluating their activity against the frameshift signals from a panel of representative bat CoVs—the most likely source of future zoonoses—as well as SARS-CoV-2 and MERS-CoV. We found that whereas some ligands had notable activity against only a few of the frameshift signals, the serine protease inhibitor nafamostat suppressed −1 PRF significantly in several of them, while having limited to no effect on −1 PRF caused by frameshift signals from other viruses used as negative controls. These results suggest it is possible to find small-molecule ligands that inhibit −1 PRF specifically in a broad spectrum of CoVs, establishing the frameshift signal as a viable target for developing pan-coronaviral therapeutics.

    View Publication Page
    08/02/21 | jumps with greater velocity and acceleration than previously reported.
    Dillman AR, Korff W, Dickinson MH, Sternberg PW
    MicroPublication Biology. 2021 Aug 02;2021:. doi: 10.17912/micropub.biology.000435

    Infective juveniles of the insect-parastic nematode canjump greater than 6 times their height, a striking evolved novelty in some species of this genus. Using high-speed videography, we observed the kinematics of spontaneousjumping behavior. Our analysis places a lower bound on the velocity and acceleration of these worms.

    View Publication Page
    08/01/21 | Extending the performance capabilities of isoSTED.
    Ulrike Boehm , Galbraith CG
    Biophysical Journal. 2021 Aug 01;120(16):3237-3239. doi: 10.1016/j.bpj.2021.07.005
    07/29/21 | Disrupting cortico-cerebellar communication impairs dexterity.
    Guo J, Sauerbrei BA, Cohen JD, Mischiati M, Graves AR, Pisanello F, Branson KM, Hantman AW
    eLife. 2021 Jul 29;10:. doi: 10.7554/eLife.65906

    To control reaching, the nervous system must generate large changes in muscle activation to drive the limb toward the target, and must also make smaller adjustments for precise and accurate behavior. Motor cortex controls the arm through projections to diverse targets across the central nervous system, but it has been challenging to identify the roles of cortical projections to specific targets. Here, we selectively disrupt cortico-cerebellar communication in the mouse by optogenetically stimulating the pontine nuclei in a cued reaching task. This perturbation did not typically block movement initiation, but degraded the precision, accuracy, duration, or success rate of the movement. Correspondingly, cerebellar and cortical activity during movement were largely preserved, but differences in hand velocity between control and stimulation conditions predicted from neural activity were correlated with observed velocity differences. These results suggest that while the total output of motor cortex drives reaching, the cortico-cerebellar loop makes small adjustments that contribute to the successful execution of this dexterous movement.

    View Publication Page
    07/29/21 | Intercellular Arc Signaling Regulates Vasodilation.
    de la Peña JB, Barragan-Iglesias P, Lou T, Kunder N, Loerch S, Shukla T, Basavarajappa L, Song J, James DN, Megat S, Moy JK, Wanghzou A, Ray PR, Hoyt K, Steward O, Price TJ, Shepherd J, Campbell ZT
    Journal of Neuroscience. 2021 Jul 29:. doi: 10.1523/JNEUROSCI.0440-21.2021

    Injury responses require communication between different cell types in the skin. Sensory neurons contribute to inflammation and can secrete signaling molecules that affect non-neuronal cells. Despite the pervasive role of translational regulation in nociception, the contribution of activity-dependent protein synthesis to inflammation is not well understood. To address this problem, we examined the landscape of nascent translation in murine dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We identified the activity-dependent gene, Arc, as a target of translation and Inflammatory cues promote local translation of Arc in the skin. Arc-deficient male mice display exaggerated paw temperatures and vasodilation in response to an inflammatory challenge. Since Arc has recently been shown to be released from neurons in extracellular vesicles (EVs), we hypothesized that intercellular Arc signaling regulates the inflammatory response in skin. We found that the excessive thermal responses and vasodilation observed in Arc defective mice are rescued by injection of Arc-containing EVs into the skin. Our findings suggest that activity-dependent production of Arc in afferent fibers regulates neurogenic inflammation potentially through intercellular signaling.Nociceptors play prominent roles in pain and inflammation. We examined rapid changes in the landscape of nascent translation in cultured dorsal root ganglia (DRGs) treated with a combination of inflammatory mediators using ribosome profiling. We identified several hundred transcripts subject to rapid preferential translation. Among them is the immediate early gene (IEG) Arc. We provide evidence that Arc is translated in afferent fibers in the skin. Arc-deficient mice display several signs of exaggerated inflammation which is normalized on injection of Arc containing extracellular vesicles (EVs). Our work suggests that noxious cues can trigger Arc production by nociceptors which in turn constrains neurogenic inflammation in the skin.

    View Publication Page
    07/27/21 | Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin.
    Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X, Zheng Q, Li KY, Snedeker J, Lavis LD, Lionnet T, Wu C
    eLife. 2021 Jul 27;10:. doi: 10.7554/eLife.69387

    Conserved ATP-dependent chromatin remodelers establish and maintain genome-wide chromatin architectures of regulatory DNA during cellular lifespan, but the temporal interactions between remodelers and chromatin targets have been obscure. We performed live-cell single-molecule tracking for RSC, SWI/SNF, CHD1, ISW1, ISW2, and INO80 remodeling complexes in budding yeast and detected hyperkinetic behaviors for chromatin-bound molecules that frequently transition to the free state for all complexes. Chromatin-bound remodelers display notably higher diffusion than nucleosomal histones, and strikingly fast dissociation kinetics with 4-7 s mean residence times. These enhanced dynamics require ATP binding or hydrolysis by the catalytic ATPase, uncovering an additional function to its established role in nucleosome remodeling. Kinetic simulations show that multiple remodelers can repeatedly occupy the same promoter region on a timescale of minutes, implicating an unending 'tug-of-war' that controls a temporally shifting window of accessibility for the transcription initiation machinery.

    View Publication Page
    07/23/21 | YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion.
    Feliciano D, Ott CM, Isabel Espinosa Medina , Weigel AV, Benedetti L, Milano KM, Tang Z, Lee T, Kliman HJ, Guller SM, Lippincott-Schwartz J
    Nature Communications. 2021 Jul 23;12(1):4502. doi: 10.1038/s41467-021-24708-2

    Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.

    View Publication Page
    07/22/21 | Molecular characterization of projection neuron subtypes in the mouse olfactory bulb.
    Zeppilli S, Ackels T, Attey R, Klimpert N, Kimberly Ritola D, Boeing S, Crombach A, Schaefer AT, Fleischmann A
    eLife. 2021 Jul 22;10:. doi: 10.7554/eLife.65445

    Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data, and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.

    View Publication Page