Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

20 Janelia Publications

Showing 1-10 of 20 results
Your Criteria:
    02/26/18 | A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters.
    Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, Suk H, Hochbaum DR, Goodwin D, Pnevmatikakis E, Pak N, Kawashima T, Yang C, Rhoades JL, Shemesh O, Asano S, Yoon Y, Freifeld L, Saulnier JL, Riegler C, Engert F, Hughes T, Drobizhev M, Szabo B, Ahrens MB, Flavell SW, Sabatini BL, Boyden ES
    Nature Chemical Biology. 2018 Feb 26:. doi: 10.1038/s41589-018-0004-9

    We developed a new way to engineer complex proteins toward multidimensional specifications using a simple, yet scalable, directed evolution strategy. By robotically picking mammalian cells that were identified, under a microscope, as expressing proteins that simultaneously exhibit several specific properties, we can screen hundreds of thousands of proteins in a library in just a few hours, evaluating each along multiple performance axes. To demonstrate the power of this approach, we created a genetically encoded fluorescent voltage indicator, simultaneously optimizing its brightness and membrane localization using our microscopy-guided cell-picking strategy. We produced the high-performance opsin-based fluorescent voltage reporter Archon1 and demonstrated its utility by imaging spiking and millivolt-scale subthreshold and synaptic activity in acute mouse brain slices and in larval zebrafish in vivo. We also measured postsynaptic responses downstream of optogenetically controlled neurons in C. elegans.

    View Publication Page
    02/24/18 | Integrative whole-brain neuroscience in larval zebrafish.
    Vanwalleghem GC, Ahrens MB, Scott EK
    Current Opinion in Neurobiology. 2018 Feb 24;50:136-145. doi: 10.1016/j.conb.2018.02.004

    Due to their small size and transparency, zebrafish larvae are amenable to a range of fluorescence microscopy techniques. With the development of sensitive genetically encoded calcium indicators, this has extended to the whole-brain imaging of neural activity with cellular resolution. This technique has been used to study brain-wide population dynamics accompanying sensory processing and sensorimotor transformations, and has spurred the development of innovative closed-loop behavioral paradigms in which stimulus-response relationships can be studied. More recently, microscopes have been developed that allow whole-brain calcium imaging in freely swimming and behaving larvae. In this review, we highlight the technologies underlying whole-brain functional imaging in zebrafish, provide examples of the sensory and motor processes that have been studied with this technique, and discuss the need to merge data from whole-brain functional imaging studies with neurochemical and anatomical information to develop holistic models of functional neural circuits.

    View Publication Page
    08/31/17 | Reactive oxygen species regulate activity-dependent neuronal structural plasticity in Drosophila.
    Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Morarach K, Sweeney ST, Landgraf M
    bioRxiv. 2017 Aug 31:081968. doi: 10.1101/081968

    Neurons are inherently plastic, adjusting their structure, connectivity and excitability in response to changes in activity. How neurons sense changes in their activity level and then transduce these to structural changes remains to be fully elucidated. Working with the Drosophila larval locomotor network, we show that neurons use reactive oxygen species (ROS), metabolic byproducts, to monitor their activity. ROS signals are both necessary and sufficient for activity-dependent structural adjustments of both pre- and postsynaptic terminals and for network output, as measured by larval crawling behavior. We find the highly conserved Parkinsons disease-linked protein DJ-1b acts as a redox sensor in neurons where it regulates pre- and postsynaptic structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. Neuronal ROS thus play an important physiological role as second messengers required for neuronal and network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.

    View Publication Page
    08/03/17 | Multi-scale approaches for high-speed imaging and analysis of large neural populations.
    Friedrich J, Yang W, Soudry D, Mu Y, Ahrens MB, Yuste R, Peterka DS, Paninski L
    PLoS Computational Biology. 2017 Aug 03;13(8):e1005685. doi: 10.1371/journal.pcbi.1005685

    Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to "zoom out" by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.

    View Publication Page
    07/31/17 | The role of the serotonergic system in motor control.
    Kawashima T
    Neuroscience Research. 2017 Ju 31:. doi: 10.1016/j.neures.2017.07.005

    The serotonergic system in the vertebrate brain is implicated in various behaviors and diseases. Its involvement in motor control has been studied for over half a century, but efforts to build a unified model of its functions have been hampered due to the complexity of serotonergic neuromodulation. This review summarizes the anatomical structure of the serotonergic system, its afferent and efferent connections to other brain regions, and recent insights into the sensorimotor computations in the serotonergic system, and considers future research directions into the roles of serotonergic system in motor control.

    View Publication Page
    10/27/16 | The serotonergic system tracks the outcomes of actions to mediate short-term motor learning.
    Kawashima T, Zwart MF, Yang C, Mensh BD, Ahrens MB
    Cell. 2016 Oct 27;167(4):933-46. doi: 10.1016/j.cell.2016.09.055

    To execute accurate movements, animals must continuously adapt their behavior to changes in their bodies and environments. Animals can learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. It is largely unknown which circuits implement this form of motor learning, or how. Using whole-brain neuronal imaging and circuit manipulations in larval zebrafish, we discovered that the serotonergic dorsal raphe nucleus (DRN) mediates short-term locomotor learning. Serotonergic DRN neurons respond phasically to swim-induced visual motion, but little to motion that is not self-generated. During prolonged exposure to a given motosensory gain, persistent DRN activity emerges that stores the learned efficacy of motor commands and adapts future locomotor drive for tens of seconds. The DRN’s ability to track the effectiveness of motor intent may constitute a computational building block for the broader functions of the serotonergic system.

    View Publication Page
    07/28/16 | A Practical Guide to Light Sheet Microscopy.
    Bennett DV, Ahrens MB
    Methods in Molecular Biology (Clifton, N.J.). 2016;1451:321-31. doi: 10.1007/978-1-4939-3771-4_22

    Light sheet fluorescence microscopy is an efficient method for imaging large volumes of biological tissue, including brains of larval zebrafish, at high spatial and fairly high temporal resolution with minimal phototoxicity.Here, we provide a practical guide for those who intend to build a light sheet microscope for fluorescence imaging in live larval zebrafish brains or other tissues.

    View Publication Page
    03/24/16 | Sensitive red protein calcium indicators for imaging neural activity.
    Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS
    eLife. 2016 Mar 24;5:. doi: 10.7554/eLife.12727

    Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.

    View Publication Page
    Freeman LabAhrens Lab
    03/22/16 | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion.
    Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang C, Schier AF, Freeman J, Engert F, Ahrens MB
    eLife. 2016 Mar 22:. doi: 10.7554/eLife.12741

    In the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments.

    View Publication Page
    02/17/16 | Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy.
    Quirin S, Vladimirov N, Yang C, Peterka DS, Yuste R, Ahrens MB
    Optics Letters. 2016 Feb 17;41(5):855-8. doi: 10.1364/OL.41.000855

    Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning—removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416×832×160  μm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain.

    View Publication Page