Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

32 Janelia Publications

Showing 1-10 of 32 results
Your Criteria:
    11/27/21 | A brainstem integrator for self-localization and positional homeostasis
    Yang E, Zwart MF, Rubinov M, James B, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB
    bioRxiv. 2021 Nov 27:. doi: 10.1101/2021.11.26.468907

    To accurately track self-location, animals need to integrate their movements through space. In amniotes, representations of self-location have been found in regions such as the hippocampus. It is unknown whether more ancient brain regions contain such representations and by which pathways they may drive locomotion. Fish displaced by water currents must prevent uncontrolled drift to potentially dangerous areas. We found that larval zebrafish track such movements and can later swim back to their earlier location. Whole-brain functional imaging revealed the circuit enabling this process of positional homeostasis. Position-encoding brainstem neurons integrate optic flow, then bias future swimming to correct for past displacements by modulating inferior olive and cerebellar activity. Manipulation of position-encoding or olivary neurons abolished positional homeostasis or evoked behavior as if animals had experienced positional shifts. These results reveal a multiregional hindbrain circuit in vertebrates for optic flow integration, memory of self-location, and its neural pathway to behavior.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    10/06/21 | Cre-Dependent Anterograde Transsynaptic Labeling and Functional Imaging in Zebrafish Using VSV With Reduced Cytotoxicity.
    Kler S, Ma M, Narayan S, Ahrens MB, Pan YA
    Frontiers in Neuroanatomy. 2021 Oct 06;15:758350. doi: 10.3389/fnana.2021.758350

    The small size and translucency of larval zebrafish () have made it a unique experimental system to investigate whole-brain neural circuit structure and function. Still, the connectivity patterns between most neuronal types remain mostly unknown. This gap in knowledge underscores the critical need for effective neural circuit mapping tools, especially ones that can integrate structural and functional analyses. To address this, we previously developed a vesicular stomatitis virus (VSV) based approach called Tracer with Restricted Anterograde Spread (TRAS). TRAS utilizes lentivirus to complement replication-incompetent VSV (VSVΔG) to allow restricted (monosynaptic) anterograde labeling from projection neurons to their target cells in the brain. Here, we report the second generation of TRAS (TRAS-M51R), which utilizes a mutant variant of VSVΔG [VSV(M51R)ΔG] with reduced cytotoxicity. Within the primary visual pathway, we found that TRAS-M51R significantly improved long-term viability of transsynaptic labeling (compared to TRAS) while maintaining anterograde spread activity. By using Cre-expressing VSV(M51R)ΔG, TRAS-M51R could selectively label excitatory ( positive) and inhibitory ( positive) retinorecipient neurons. We further show that these labeled excitatory and inhibitory retinorecipient neurons retained neuronal excitability upon visual stimulation at 5-8 days post fertilization (2-5 days post-infection). Together, these findings show that TRAS-M51R is suitable for neural circuit studies that integrate structural connectivity, cell-type identity, and neurophysiology.

    View Publication Page
    10/23/20 | Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish.
    Mu Y, Narayan S, Mensh BD, Ahrens MB
    Current Opinion in Neurobiology. 2020 Oct 19;64:151-160. doi: 10.1016/j.conb.2020.08.013

    The brain is tasked with choosing actions that maximize an animal's chances of survival and reproduction. These choices must be flexible and informed by the current state of the environment, the needs of the body, and the outcomes of past actions. This information is physiologically encoded and processed across different brain regions on a wide range of spatial scales, from molecules in single synapses to networks of brain areas. Uncovering these spatially distributed neural interactions underlying behavior requires investigations that span a similar range of spatial scales. Larval zebrafish, given their small size, transparency, and ease of genetic access, are a good model organism for such investigations, allowing the use of modern microscopy, molecular biology, and computational techniques. These approaches are yielding new insights into the mechanistic basis of behavioral states, which we review here and compare to related studies in mammalian species.

    View Publication Page
    08/01/20 | Precision Calcium Imaging of Dense Neural Populations via a Cell-Body-Targeted Calcium Indicator.
    Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT, Gritton HJ, Romano MF, Gao R, Yu CJ, Tseng H, Bensussen S, Narayan S, Yang C, Freifeld L, Siciliano CA, Gupta I, Wang J, Pak N, Yoon Y, Ullmann JF, Guner-Ataman B, Noamany H, Sheinkopf ZR, Park WM, Asano S, Keating AE, Trimmer JS, Reimer J, Tolias AS, Bear MF, Tye KM, Han X, Ahrens MB, Boyden ES
    Neuron. 2020 Aug 01;107(3):470. doi: 10.1016/j.neuron.2020.05.029

    Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 μm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.

    View Publication Page
    07/08/20 | Bright and high-performance genetically encoded Ca indicator based on mNeonGreen fluorescent protein.
    Zarowny L, Aggarwal A, Rutten VM, Kolb I, GENIE Project , Patel R, Huang H, Chang Y, Phan T, Kanyo R, Ahrens MB, Allison WT, Podgorski K, Campbell RE
    ACS Sensors. 2020 Jul 08:. doi: 10.1021/acssensors.0c00279

    Genetically encodable calcium ion (Ca) indicators (GECIs) based on green fluorescent proteins (GFP) are powerful tools for imaging of cell signaling and neural activity in model organisms. Following almost 2 decades of steady improvements in the GFP-based GCaMP series of GECIs, the performance of the most recent generation (i.e., jGCaMP7) may have reached its practical limit due to the inherent properties of GFP. In an effort to sustain the steady progression toward ever-improved GECIs, we undertook the development of a new GECI based on the bright monomeric GFP, mNeonGreen (mNG). The resulting indicator, mNG-GECO1, is 60% brighter than GCaMP6s in vitro and provides comparable performance as demonstrated by imaging Ca dynamics in cultured cells, primary neurons, and in vivo in larval zebrafish. These results suggest that mNG-GECO1 is a promising next-generation GECI that could inherit the mantle of GCaMP and allow the steady improvement of GECIs to continue for generations to come.

    View Publication Page
    02/25/20 | High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2+ imaging
    McRaven C, Tanese D, Zhang L, Yang C, Ahrens MB, Emiliani V, Koyama M
    bioRxiv. 2020 Feb 25:. doi: https://doi.org/10.1101/2020.02.21.959650

    The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.

    View Publication Page
    11/04/19 | Zebrafish neuroscience: Using artificial neural networks to help understand brains.
    Ahrens MB
    Current Biology. 2019 Nov 04;29(21):R1138-R1140. doi: 10.1016/j.cub.2019.09.039

    Brains are notoriously hard to understand, and neuroscientists need all the tools they can get their hands on to have a realistic shot at it. Advances in machine learning are proving instrumental, illustrated by their recent use to shed light on navigational strategies implemented by zebrafish brains.

    View Publication Page
    10/18/19 | A bidirectional network for appetite control in larval zebrafish.
    Wee CL, Song EY, Johnson RE, Ailani D, Randlett O, Kim J, Nikitchenko M, Bahl A, Yang C, Ahrens MB, Kawakami K, Engert F, Kunes S
    Elife. 2019 Oct 18;8:. doi: 10.7554/eLife.43775

    Medial and lateral hypothalamic loci are known to suppress and enhance appetite, respectively, but the dynamics and functional significance of their interaction have yet to be explored. Here we report that, in larval zebrafish, primarily serotonergic neurons of the ventromedial caudal hypothalamus (cH) become increasingly active during food deprivation, whereas activity in the lateral hypothalamus (LH) is reduced. Exposure to food sensory and consummatory cues reverses the activity patterns of these two nuclei, consistent with their representation of opposing internal hunger states. Baseline activity is restored as food-deprived animals return to satiety via voracious feeding. The antagonistic relationship and functional importance of cH and LH activity patterns were confirmed by targeted stimulation and ablation of cH neurons. Collectively, the data allow us to propose a model in which these hypothalamic nuclei regulate different phases of hunger and satiety and coordinate energy balance via antagonistic control of distinct behavioral outputs.

    View Publication Page
    08/13/19 | Bright and photostable chemigenetic indicators for extended in vivo voltage imaging.
    Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y, Campagnola L, Seeman SC, Yu J, Zheng J, Grimm JB, Patel R, Friedrich J, Mensh BD, Paninski L, Macklin JJ, Murphy GJ, Podgorski K, Lin B, Chen T, Turner GC, Liu Z, Koyama M, Svoboda K, Ahrens MB, Lavis LD, Schreiter ER
    Science. 2019 Aug 13;365(6454):699-704. doi: 10.1126/science.aav6416

    Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, "Voltron", that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 min of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.

    View Publication Page
    07/15/19 | A genetically encoded fluorescent sensor for in vivo imaging of GABA.
    Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, Jensen TP, Kolb I, Knott EL, Novak O, Podgorski K, Leidenheimer NJ, Rusakov DA, Ahrens MB, Kullmann DM, Looger LL
    Nature Methods. 2019 Jul 15;16(8):763-770. doi: 10.1038/s41592-019-0471-2

    Current techniques for monitoring GABA (γ-aminobutyric acid), the primary inhibitory neurotransmitter in vertebrates, cannot follow transients in intact neural circuits. To develop a GABA sensor, we applied the design principles used to create the fluorescent glutamate receptor iGluSnFR. We used a protein derived from a previously unsequenced Pseudomonas fluorescens strain and performed structure-guided mutagenesis and library screening to obtain intensity-based GABA sensing fluorescence reporter (iGABASnFR) variants. iGABASnFR is genetically encoded, detects GABA release evoked by electric stimulation of afferent fibers in acute brain slices and produces readily detectable fluorescence increases in vivo in mice and zebrafish. We applied iGABASnFR to track mitochondrial GABA content and its modulation by an anticonvulsant, swimming-evoked, GABA-mediated transmission in zebrafish cerebellum, GABA release events during interictal spikes and seizures in awake mice, and found that GABA-mediated tone decreases during isoflurane anesthesia.

    View Publication Page