Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

4 Janelia Publications

Showing 1-4 of 4 results
Your Criteria:
    10/23/20 | Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish.
    Mu Y, Narayan S, Mensh BD, Ahrens MB
    Current Opinion in Neurobiology. 2020 Oct 19;64:151-160. doi: 10.1016/j.conb.2020.08.013

    The brain is tasked with choosing actions that maximize an animal's chances of survival and reproduction. These choices must be flexible and informed by the current state of the environment, the needs of the body, and the outcomes of past actions. This information is physiologically encoded and processed across different brain regions on a wide range of spatial scales, from molecules in single synapses to networks of brain areas. Uncovering these spatially distributed neural interactions underlying behavior requires investigations that span a similar range of spatial scales. Larval zebrafish, given their small size, transparency, and ease of genetic access, are a good model organism for such investigations, allowing the use of modern microscopy, molecular biology, and computational techniques. These approaches are yielding new insights into the mechanistic basis of behavioral states, which we review here and compare to related studies in mammalian species.

    View Publication Page
    08/01/20 | Precision Calcium Imaging of Dense Neural Populations via a Cell-Body-Targeted Calcium Indicator.
    Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT, Gritton HJ, Romano MF, Gao R, Yu CJ, Tseng H, Bensussen S, Narayan S, Yang C, Freifeld L, Siciliano CA, Gupta I, Wang J, Pak N, Yoon Y, Ullmann JF, Guner-Ataman B, Noamany H, Sheinkopf ZR, Park WM, Asano S, Keating AE, Trimmer JS, Reimer J, Tolias AS, Bear MF, Tye KM, Han X, Ahrens MB, Boyden ES
    Neuron. 2020 Aug 01;107(3):470. doi: 10.1016/j.neuron.2020.05.029

    Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 μm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.

    View Publication Page
    07/08/20 | Bright and high-performance genetically encoded Ca indicator based on mNeonGreen fluorescent protein.
    Zarowny L, Aggarwal A, Rutten VM, Kolb I, GENIE Project , Patel R, Huang H, Chang Y, Phan T, Kanyo R, Ahrens MB, Allison WT, Podgorski K, Campbell RE
    ACS Sensors. 2020 Jul 08:. doi: 10.1021/acssensors.0c00279

    Genetically encodable calcium ion (Ca) indicators (GECIs) based on green fluorescent proteins (GFP) are powerful tools for imaging of cell signaling and neural activity in model organisms. Following almost 2 decades of steady improvements in the GFP-based GCaMP series of GECIs, the performance of the most recent generation (i.e., jGCaMP7) may have reached its practical limit due to the inherent properties of GFP. In an effort to sustain the steady progression toward ever-improved GECIs, we undertook the development of a new GECI based on the bright monomeric GFP, mNeonGreen (mNG). The resulting indicator, mNG-GECO1, is 60% brighter than GCaMP6s in vitro and provides comparable performance as demonstrated by imaging Ca dynamics in cultured cells, primary neurons, and in vivo in larval zebrafish. These results suggest that mNG-GECO1 is a promising next-generation GECI that could inherit the mantle of GCaMP and allow the steady improvement of GECIs to continue for generations to come.

    View Publication Page
    02/25/20 | High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2+ imaging
    McRaven C, Tanese D, Zhang L, Yang C, Ahrens MB, Emiliani V, Koyama M
    bioRxiv. 2020 Feb 25:. doi: https://doi.org/10.1101/2020.02.21.959650

    The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.

    View Publication Page