Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

4 Janelia Publications

Showing 1-4 of 4 results
Your Criteria:
    Egnor Lab
    01/11/16 | The contribution of ultrasonic vocalizations to mouse courtship.
    Egnor SR, Seagraves KM
    Current Opinion in Neurobiology. 2016 Jan 11;38:1-5. doi: 10.1016/j.conb.2015.12.009

    Vocalizations transmit information to social partners, and mice use these signals to exchange information during courtship. Ultrasonic vocalizations from adult males are tightly associated with their interactions with females, and vary as a function of male quality. Work in the last decade has established that the spectrotemporal features of male vocalizations are not learned, but that female attention toward specific vocal features is modified by social experience. Additionally, progress has been made on elucidating how mouse vocalizations are encoded in the auditory system, and on the olfactory circuits that trigger their production. Together these findings provide us with important insights into how vocal communication can contribute to social interactions.

    View Publication Page
    Egnor Lab
    05/28/15 | Female mice ultrasonically interact with males during courtship displays.
    Neunuebel JP, Taylor AL, Arthur BJ, Egnor SR
    eLife. 2015 May 28;4:e06203. doi: 10.7554/eLife.06203

    During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior.

    View Publication Page
    Egnor Lab
    07/01/14 | Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus.
    Seagraves KM, Hedwig B
    Journal of Experimental Biology. 2014 Jul 1;217(Pt 13):2390-8. doi: 10.1242/jeb.101402

    The cricket's auditory system is a highly directional pressure difference receiver whose function is hypothesised to depend on phase relationships between the sound waves propagating through the auditory trachea that connects the left and right hearing organs. We tested this hypothesis by measuring the effect of experimentally constructed phase shifts in acoustic stimuli on phonotactic behavior of Gryllus bimaculatus, the oscillatory response patterns of the tympanic membrane, and the activity of the auditory afferents. The same artificial calling song was played simultaneously at the left and right sides of the cricket, but one sound pattern was shifted in phase by 90 deg (carrier frequencies between 3.6 and 5.4 kHz). All three levels of auditory processing are sensitive to experimentally induced acoustic phase shifts, and the response characteristics are dependent on the carrier frequency of the sound stimulus. At lower frequencies, crickets steered away from the sound leading in phase, while tympanic membrane vibrations and auditory afferent responses were smaller when the ipsilateral sound was leading. In contrast, opposite responses were observed at higher frequencies in all three levels of auditory processing. Minimal responses occurred near the carrier frequency of the cricket's calling song, suggesting a stability at this frequency. Our results indicate that crickets may use directional cues arising from phase shifts in acoustic signals for sound localisation, and that the response properties of pressure difference receivers may be analysed with phase-shifted sound stimuli to further our understanding of how insect auditory systems are adapted for directional processing.

    View Publication Page
    Egnor Lab
    09/30/13 | Automated multi-day tracking of marked mice for the analysis of social behaviour.
    Ohayon S, Avni O, Taylor AL, Perona P, Roian Egnor SE
    Journal of Neuroscience Methods. 2013 Sep 30;219(1):10-19. doi: 10.1016/j.jneumeth.2013.05.013

    A quantitative description of animal social behaviour is informative for behavioural biologists and clinicians developing drugs to treat social disorders. Social interaction in a group of animals has been difficult to measure because behaviour develops over long periods of time and requires tedious manual scoring, which is subjective and often non-reproducible. Computer-vision systems with the ability to measure complex social behaviour automatically would have a transformative impact on biology. Here, we present a method for tracking group-housed mice individually as they freely interact over multiple days. Each mouse is bleach-marked with a unique fur pattern. The patterns are automatically learned by the tracking software and used to infer identities. Trajectories are analysed to measure behaviour as it develops over days, beyond the range of acute experiments. We demonstrate how our system may be used to study the development of place preferences, associations and social relationships by tracking four mice continuously for five days. Our system enables accurate and reproducible characterisation of wild-type mouse social behaviour and paves the way for high-throughput long-term observation of the effects of genetic, pharmacological and environmental manipulations.

    View Publication Page