Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2 Janelia Publications

Showing 1-2 of 2 results
Your Criteria:
    11/16/16 | The genome of the crustacean Parhyale hawaiensis: a model for animal development, regeneration, immunity and lignocellulose digestion.
    Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stantcheva N, Semon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Extavour C, Browne W, Wolff C, Averof M, et al
    eLife. 2016 Nov 16;5:e20062. doi: 10.7554/eLife.20062

    Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently adult regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, small non-coding RNAs and transcription factors that will enhance ongoing functional studies. Parhayle is a member of the Malacostraca, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion (wood eating), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of the Parhyale model. The first Malacostracan genome sequence will underpin ongoing comparative work in important food crop species and research investigating lignocellulose as energy source.

    Publication first appeared in BioRxiv on August 2, 2016. http://dx.doi.org/10.1101/065789

    View Publication Page
    09/26/16 | Flight of the dragonflies and damselflies.
    Bomphrey RJ, Nakata T, Henningsson P, Lin H
    Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2016 Sep 26;371(1704):. doi: 10.1098/rstb.2015.0389

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

    View Publication Page