Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    12/23/16 | Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy.
    Hanslovsky P, Bogovic JA, Saalfeld S
    Bioinformatics (Oxford, England). 2016 Dec 23:. doi: 10.1093/bioinformatics/btw794

    MOTIVATION: Serial section microscopy is an established method for detailed anatomy reconstruction of biological specimen. During the last decade, high resolution electron microscopy (EM) of serial sections has become the de-facto standard for reconstruction of neural connectivity at ever increasing scales (EM connectomics). In serial section microscopy, the axial dimension of the volume is sampled by physically removing thin sections from the embedded specimen and subsequently imaging either the block-face or the section series. This process has limited precision leading to inhomogeneous non-planar sampling of the axial dimension of the volume which, in turn, results in distorted image volumes. This includes that section series may be collected and imaged in unknown order.

    RESULTS: We developed methods to identify and correct these distortions through image-based signal analysis without any additional physical apparatus or measurements. We demonstrate the efficacy of our methods in proof of principle experiments and application to real world problems.

    AVAILABILITY AND IMPLEMENTATION: We made our work available as libraries for the ImageJ distribution Fiji and for deployment in a high performance parallel computing environment. Our sources are open and available at http://github.com/saalfeldlab/section-sort, http://github.com/saalfeldlab/z-spacing and http://github.com/saalfeldlab/z-spacing-spark CONTACT: : saalfelds@janelia.hhmi.orgSupplementary information: Supplementary data are available at Bioinformatics online.

    View Publication Page
    Saalfeld LabFly Functional Connectome
    06/15/16 | Robust registration of calcium images by learned contrast synthesis.
    Bogovic JA, Hanslovsky P, Wong AM, Saalfeld S
    IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro. 2016 Jun 15:. doi: 10.1109/ISBI.2016.7493463

    Multi-modal image registration is a challenging task that is vital to fuse complementary signals for subsequent analyses. Despite much research into cost functions addressing this challenge, there exist cases in which these are ineffective. In this work, we show that (1) this is true for the registration of in-vivo Drosophila brain volumes visualizing genetically encoded calcium indicators to an nc82 atlas and (2) that machine learning based contrast synthesis can yield improvements. More specifically, the number of subjects for which the registration outright failed was greatly reduced (from 40% to 15%) by using a synthesized image.

    View Publication Page
    03/18/16 | Quantitative neuroanatomy for connectomics in Drosophila.
    Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart M, Champion A, Midgley F, Fetter RD, Saalfeld S, Cardona A
    eLife. 2016 Mar 18:e12059. doi: 10.7554/eLife.12059

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity.

    View Publication Page